Posts Tagged ‘Research’

Ever so often, in many and different places, people take photos. The immediacy of access to cameras on smartphone devices has made photography a ubiquitous and more casual activity. The awareness and sensitivity of people to visual scenes and materials has increased, and photo images especially play a greater role in our lives. When people take their own photos to capture their experiences, this activity may become an integral part of the experience. It raises therefore an interesting question, how an experience could be subjectively affected by the act of taking photos whilst the experience is happening.

Almost obviously, our tendency to take photos is stronger during touristic experiencesAscona: Promenade on Lago Maggiore away from home while travelling in our own country and furthermore on visits to foreign countries. The experience could take place on holiday in a major city when touring its main streets and famous sites, or on vacation in a holiday resort in nature, going on a trip to the top of mountains, near a lake or along the sea-shore. However, we may take photos during more ordinary experiences such as dining in a restaurant (e.g., photo-taking of appetizing food dishes); in a party or family gathering; while playing (e.g., creative games like Lego); watching parades, sports events or other festivities; and even during a shopping tour. In those experiences we could be more passive observers or more active players, which may influence any additional involvement in photo-taking and its effect on the overall experience.

Kristin Diehl, Gal Zauberman and Alixandra Barasch (2016) investigated in-depth the effect that taking photos by consumers during an experience may have on their enjoyment from the experience: whether it amplifies enjoyment, or instead dampens it, and how the level of enjoyment varies in different conditions. Furthermore, they examined a proposed mechanism where engagement in an experience mediates enjoyment: in positive experiences, when individuals are more intensively engaged or immersed in the experience, it may elevate their enjoyment; thereby, to the extent that taking photos increases engagement, it would also heighten enjoyment. The researchers consider two routes of influence: (a) photo-taking competes with the ‘source’ experience by causing attention shifts, thus reducing engagement and enjoyment from the experience; (b) photo-taking helps in directing and focusing more attention on visual aspects of the ‘source’ experience, leading to increased engagement and consequently heighten enjoyment.

The photos taken may have subsequent benefits to individuals such as in aiding with memory of experienced events at a later time (i.e., serving as memory cues) and in showing photos of their experiences to relatives and friends (i.e., social benefit), but the researchers focus specifically on effect of the act of taking a photo at the time of the experience. Their research entailed nine studies (3 field studies & 6 lab experiments), using a range of methodologies and experience-contexts.

A most typical touristic experience is a city bus tour — consider riding a double-decker bus on an open-air top floor. Diehl and her colleagues organised actual bus tours in Philadelphia for photo takers and non-photo takers. They succeeded in showing in this setting that photo takers enjoyed their touristic experience more than those who did not take photos. They also obtained some evidence that the photo takers may have felt more engaged during the experience though the effect was statistically too weak. (Note: In order to exclude any benefits from using photos after the bus tour all participants were disallowed to take their personal cameras or smartphones with them and the assigned  ‘photo-takers’ were given instead a digital camera with a new memory card, yet they could not keep the card afterwards).

The researchers conducted a second field study, this time in the context of a casual lunch (i.e., it was not suggested the food was especially attractive to photograph). In this study the results were already stronger. Consistent with the bus tour study, photo-takers enjoyed the lunch experience more than those not taking photos, but in addition the photo-takers were found significantly more engaged. The setting was sufficient to support just in part that greater engagement mediates the higher enjoyment felt by those taking photos. (Note: In this study no physical restrictions were imposed — those instructed to take photos could use their own cameras or smartphones).

Lab experiments create less realistic experiences since they are only simulated, and the act of taking a photo is also simulated (i.e., a camera icon and a mouse click). However, a controlled experiment can facilitate surfacing the effects of interest while testing for the influence of additional factors. It is acknowledged that the researchers have already shown there is ground to their expected effects on enjoyment in real-life settings.

A lab experiment of simulated bus tours (using videos of tours in Hollywood, California, and London, UK), found support that photo-takers enjoyed their bus tour experiences significantly more, as well as felt significantly more engaged in them, than those not taking photos. Furthermore, there also was support that engagement fully mediates or connects positively between taking photos and enjoyment. Moreover, memory of the greater enjoyment of those taking photos persists as long as a week after the experience. (Note: Remembered enjoyment is to be distinguished from remembered content of the experience).

So, does taking photos indeed work to focus greater attention on what people experience and thus enhances their engagement and increases their enjoyment? The researchers provide important evidence with the help of eye-tracking (field study, museum exhibit) that taking a photo channels more attention to the objects of interest in the experience. In particular, it directs more attention to relevant visual aspects of the experience, that is, to the exhibit artifacts vis-à-vis other objects (e.g., information displays) in the exhibit hall. First, significant effects of greater enjoyment and engagement by photo-takers, and the mediation function of engagement, are replicated. Second, taking photos leads to spending a relatively greater time fixating on the artifacts (as proportion of total duration of fixations) compared to visiting without taking photos. Visitors taking a photo of an artifact fixate for a longer duration on it compared with those who only watch it; no such differences were found for other objects. Third, it is not only the duration of fixations but also the number of fixations dedicated to artifacts that are relatively higher among those taking photos compared to those who do not. (It should be noted, however, that measures were aggregated across ‘exhibit artifacts’ versus ‘other objects’, and not verified for every single artifact being photographed or not.)

Scenes for photography can be very different, some are rich with detail, light and colour (e.g., a lakeside landscape), others being more monotonic or homogenous (e.g., a vase or a person against a dark uniform background). This difference in experience seems to matter little with regard to enjoyment or engagement when taking photos. Comparing between bus tours (Hollywood/London) and pop/rock concerts (performing against a plain and non-changing background), it is found that similarly in those experiences those taking photos enjoy the experience more and feel more engaged than non-photo takers, regardless of the type of experience (full mediation was also supported).

Any indication that participants in the experiment have enjoyed the concert somewhat more than bus tours did not lead to any consistent conclusions; it may be due more to a music concert being more energizing than a city bus tour at least in idea, especially if we take into account also the experience of the music not captured in a photograph. But in real-life concerts of performing artists the viewers more usually today record video clips, not still photographs, by simply raising the smartphone above the head and filming. It is hard to say in these circumstances how much they may lose of the experience at all if they watch it through the screen and how it may affect their attention and enjoyment. Dealing with the smartphone or tablet to check the videos during the performance may distract them somewhat more. Yet, it could be that viewers recording videos on their devices may be disturbing more to other people in the audience than their own enjoyment of the experience.

Expo Milano 2015: Dining Bar (Argentina)

EXPO Milano 2015: For illustration of experience

We may find ourselves in different positions in experiences: Imagine taking a boat cruise on a lake, standing on the deck viewing the landscape around, or watching a parade on a maid road, looking from the side of the road — in these events one is primarily a passive observer. However, one becomes an active participant in the event, for example, of playing a creative game such as building Lego models or possibly visiting a museum exhibit that allows learning by using interactive displays and tools. As Diehl and colleagues suggest, it may have two implications: (a) the ‘active’ experience is in origin more entertaining and enjoyable so there is less to gain by additionally taking photos; (b) engaging in the task of taking photos interferes with participation in the main activity. The researchers applied creative arts-and-crafts projects (e.g., building an Eiffel Tower from wafers and icing): to make conditions comparable, they assigned participants to either actively building the tower model or to passively observing someone else building the same kind of model.

Indeed, taking photos during the experience makes a difference in increasing engagement and enjoyment only for those observing the project and not for those who are actively building the model. Photo takers who actively built the model were also more inclined to report that taking photos during the experience interfered with their project compared to those who only observed and took photos. On the other hand, the latter took more photos (about ten on average) compared with those who tried to build the project and take photos simultaneously (5.5 on average). Reasonably observers were more free to take photos and enjoy it as well. While taking photos did not increase enjoyment of the ‘builders’, there is also no evidence that it decreased it. It could be a little disappointing as we may expect that taking photos as we progress may enhance our sense of pride and satisfaction with our creation taking form — a sort of ‘I Built It Myself’ effect (following an “I Designed It Myself” effect by Franke, Schreier and Kaiser, 2010). Two requirements may be needed: first, that the ‘builder’ is of course successful during his or her task, and second, that by intermittently advancing with the project and stopping for a minute when progress is made to take a photo, it helps to minimise interference or distraction.

This topic brings to mind a particular concern, when the task of photography intervenes in the ‘source’ experience, and potentially disrupts it. Diehl and her colleagues cleverly distinguish between the functional-physical act of taking photos (i.e., operating a camera) and the mental process driving behind it (i.e., planning  the photos). It may be argued in this regard that the impact may be different on people taking photos with a smartphone or tablet device, a compact camera, or a more complex single-lens-reflex (SLR) camera. Also, more dedicated amateur photographers, with greater interest and photographic skills, may approach taking photos during an experience differently from others. This issue unfortunately does not receive an adequate answer in the research.

The researchers test two kinds of suspected interferences that may disrupt or distract photo takers from the main experience they engage in: (1) physical — by assuming one would have to carry and hold a bulky digital SLR camera (represented in the experiment just by a larger camera icon); and (2) functional — by enabling the photographer also to delete unsatisfactory photos right after taking them. The results have shown that with medium-interference (‘holding SLR’) the enjoyment of these photo-takers was in-between those taking photos as above and those not taking photos, not significantly different from either. Yet, with high-interference (‘SLR + deletion’) enjoyment was close and not statistically different from non-photo takers and lower compared with ‘regular’ photo-takers. Corresponding findings were obtained for engagement. Attending to delete photos is the task that appears to truly distract photo takers from the main experience (like checking one’s video during a concert). Holding an SLR camera should not disturb so much dedicated amateur photographers (with some exceptions of extra equipment) but certain operations in taking photos may demand additional attention that could indeed compete with the subject experience.

Nevertheless, the researchers demonstrate in another experiment that the mental process of thinking about taking photos and planning them is more crucial than the functional act of taking the photos. Planning to take photos alone increased enjoyment just as for those actually taking photos, compared with those not involved in any way in taking photos. In other words, planning to taking photos “led to similar levels of enjoyment as actually taking photos”. Reported engagement was similarly heightened when planning to take photos. For more dedicated amateur photographers planning the photos to be taken is a key part of the activity and may not be easy to separate from some functions (e.g., choices of composition, focal object, exposure and speed). Yet the photography-related activity may not be viewed as an interference but as an integral part of the whole experience, a way of living the experience more deeply and vividly.

When the experience is perceived as negative, taking photos would also increase engagement, but in this case it will result in lower enjoyment compared to those not taking photos. The increased engagement means more attention of the photo takers becomes focused on negative aspects of the experience.

The researchers study a specific mechanism of mediation by engagement between taking photos and enjoyment. But many consumers may receive their satisfaction and joy from recording their experience to refresh their memories later through the photos, perhaps more so if they are less interested in photography per se. Moreover, consumers increasingly take photos with the intention of uploading them to social media networks (e.g., Facebook, Instagram) for sharing with their acquaintances, close and far. Diehl and colleagues are not convinced, based on an initial survey, that people anticipate such benefits while taking the photos. Nevertheless, they do not exclude this possibility: they note that “individuals presumably take photos in part because they expect that reviewing those photos in the future will provide them with additional enjoyment” and such forward-looking behaviour may enhance their immediate enjoyment from the experience. In their judgement many consumers do not anticipate such an effect. They do note, however, that many marketers also forbid taking photos on their premises because they seem to believe that taking photos ruins individuals’ experiences.

The research of Diehl, Zauberman and Barasch is interesting and refreshing on a topic not studied often. It shows from different angles how taking photos enhances the enjoyment of consumers in positive experiences through increased engagement (i.e., focus more attention, feeling more deeply immersed in the experience). Taking photos could plausibly be seen as less interfering or disrupting to people the closer they perceive this activity as complementary to the experience itself, and especially so for those more interested in photography. Marketers should be less reluctant to let consumers taking photos since it is more likely to make them enjoy the experience better. Consumers have to learn when is the best timing to turn to taking photos so as to enjoy it the most as part of the whole experience.

Ron Ventura, Ph.D. (Marketing)


How Taking Photos Increases Enjoyment of Experiences; Kristin Diehl, Gal Zauberman, and Alixandra Barasch, 2016; Journal of Personality and Social Psychology, 111 (2), pp. 119-140.


Read Full Post »

The strength, impact and value of a brand are embodied, fairly concisely, in the concept of ‘brand equity’. However, there are different views on how to express and measure brand equity, whether from a consumer (customer) perspective or a firm perspective. Metrics based on a consumer viewpoint (measured in surveys) raise particular concern as to what actual effects they have in the marketplace. Datta, Ailawadi and van Heerde (2017) have answered to the challenge and investigated how well Consumer-Based metrics of Brand Equity (CBBE) align with Sales-Based estimates of Brand Equity (SBBE). The CBBE metrics were adopted from the model of Brand Asset Valuator (Y&R) whereas SBBE estimates were derived from modelling market data of actual purchases. They also examined the association of CBBE with behavioural response to marketing mix actions [1].

In essence, brand equity expresses an incremental value of a product (or service) that can be attributed to its brand name above and beyond physical (or functional) attributes. Alternately,  brand equity is conceived as the added value of a branded product compared with an identical version of that product if it were unbranded. David Aaker defined four main groups of assets linked to a brand that add to its value: awareness, perceived quality, loyalty, and associations beyond perceived quality. On the grounds of this conceptualization, Aaker subsequently proposed the Brand Equity Ten measures, grouped into five categories: brand loyalty, awareness, perceived quality / leadership, association / differentiation, and market behaviour. Kevin Keller broadened the scope of brand equity wherein greater and more positive knowledge of customers (consumers) about a brand would lead them to respond more favourably to marketing activities of the brand (e.g., pricing, advertising).

The impact of a brand may occur at three levels: customer market, product market and financial market. In accordance, academics have followed three distinct perspectives for measuring brand equity: (a) customer-based — an attraction of consumers to the “non-objective” part of the product offering (e.g., ‘mindset’  as in beliefs and attitudes, brand-specific ‘intercept’ in a choice model); (b) company-based — additional value accrued to the firm from a product because of a brand name versus an equivalent product but non-branded (e.g., discounted cash flow); financial-based — brand’s worth is the price it brings or could bring in the financial market (e.g., materialised via mergers and acquisitions, stock prices)[2]. This classification is not universal:  for example, discounted cash flows are sometimes described as ‘financial’; estimates of brand value derived from a choice-based conjoint model constitute a more implicit reflection of the consumers’ viewpoint. Furthermore, models based on stated-choice (conjoint) or purchase (market share) data may vary greatly in the effects they include whether in interaction with each competing brand or independent from the brand ‘main effect’ (e.g., product attributes, price, other marketing mix variables).

A class of attitudinal (‘mindset’) models of brand equity may encompass a number of aspects and layers: awareness –> perceptions and attitudes about product attributes and functional benefits (+ overall perceived quality), ‘soft’ image associations (e.g., emotions, personality, social benefits) –> attachment or affinity –> loyalty (commitment). Two noteworthy academic studies have built upon the conceptualizations of Aaker and Keller in constructing and testing consumer-based measures:

  • Yoo and Donthu (2001) constructed a three-dimension model of brand equity comprising brand loyalty, brand awareness / associations (combined), and perceived quality (strength of associations was adopted from Keller’s descriptors of brand image). The multidimensional scale (MBE) was tested and validated across multiple product categories and cultural communities [3].
  • Netemeyer and colleagues (2004) demonstrated across products and brands that perceived quality, perceived value (for the cost), and uniqueness of a given brand potentially contribute to willingness to pay a price premium for the brand which in turn acts as a direct antecedent of brand purchase behaviour [4]. Price premium, an aspect of brand loyalty, is a common metric used for assessing brand equity.

Datta, Ailawadi and van Heerde distinguish between two measurement approaches: the consumer-based brand equity (CBBE) approach measures what consumers think and feel about the brand, while the sales-based brand equity (SBBE) approach is based on choice or share of the brand in the marketplace.

The CBBE approach in their research is applied through data on metrics from the Brand Asset Valuator model developed originally by Young and Roubicam (Y&R) advertising agency (the brand research activity is now defined as a separate entity, BAV Group; both Y&R and BAV Group are part of WPP media group). The BAV model includes four dimensions: Relevance to the consumers (e.g., fits in their lifestyles); Esteem of the brand (i.e., how much consumers like the brand and hold it in high regard); Knowledge of the brand (i.e., consumers are aware of and understand what the brand stands for); and  Differentiation from the competition (e.g., uniqueness of the brand)[5].

The SBBE approach is operationalised through modelling of purchase data (weekly scanner data from IRI). The researchers derive estimates of brand value in a market share attraction model (with over 400 brands from 25 categories, though just 290 brands for which BAV data could be obtained were included in subsequent CBBE-SBBE analyses) over a span of ten years (2002-2011). Notably, brand-specific intercepts were estimated for each year; an annual level is sufficient and realistic to account for the pace of change in brand equity over time. The model allowed for variation between brands in the sensitivity to their marketing mix actions (regular prices, promotional prices, advertising spending, distribution {on-shelf availability} and promotional display in stores) — these measures are not taken as part of SBBE values but indicate nonetheless expected manifestation of higher brand equity (impact); after being converted into elasticities, they play a key role in examining the relation of CBBE to behavioural outcomes in the marketplace.

  • Datta et al. seem to include in a SBBE approach estimates derived from (a) actual brand choices and sales data as well as (b) self-reported choices in conjoint studies and surveys. But subjective responses and behavioural responses are not quite equivalent bases. The authors may have aimed reasonably to distinguish ‘choice-based’ measures of brand equity from ‘attitudinal’ measures, but it still does not justify to mix between brands and products consumers say they would choose and those they actually choose to purchase. Conjoint-based estimates are more closely consumer-based.
  • Take for instance a research by Ferjani, Jedidi and Jagpal (2009) who offer a different angle on levels of valuation of brand equity. They derived brand values through a choice-based conjoint model (Hierarchical Bayes estimation at the individual level), regarded as consumer-level valuation. Vis-à-vis the researchers constructed a measure of brand equity from a firm perspective based on expected profits (rather than discounted cash flows), presented as firm-level valuation. Nonetheless, in order to estimate sales volume they ‘imported’ predicted market shares from the conjoint study, thus linking the two levels [6].


Not all dimensions of BAV (CBBE) are the same in relation to SBBE: Three of the dimensions of BAV — relevance, esteem, and knowledge — are positively correlated with SBBE (0.35, 0.39, & 0.53), while differentiation is negatively although weakly correlated with SBBE (-0.14). The researchers reasoned in advance that differentiation could have a more nuanced and versatile market effect (a hypothesis confirmed) because differentiation could mean the brand is attractive to only some segments and not others, or that uniqueness may appeal to only some of the consumers (e.g., more open to novelty and distinction).

Datta et al. show that correlations of relevance (0.55) and esteem (0.56) with market shares of the brands are even higher, and the correlation of differentiation with market shares is less negative (-0.08), than their correlations with SBBE (correlations of knowledge are about the same). The SBBE values capture a portion of brand attraction to consumers. Market shares on the other hand factor in additional marketing efforts that dimensions of BAV seem to account for.

Some interesting brand cases can be detected in a mapping of brands in two categories (for 2011): beer and laundry detergents. For example, among beers, Corona is positioned on SBBE much higher than expected given its overall BAV score, which places the brand among those better valued on a consumer basis (only one brand is considerably higher — Budweiser). However, with respect to market share the position of Corona is much less flattering and quite as expected relative to its consumer-based BAV score, even a little lower. This could suggest that too much power is credited to the name and other symbols of Corona, while the backing from marketing efforts to support and sustain it is lacking (i.e., the market share of Corona is vulnerable).  As another example, in the category of laundry detergents, Tide (P&G) is truly at the top on both BAV (CBBE) and market share. Yet, the position of Tide on SBBE relative to BAV score is not exceptional or impressive, being lower than predicted for its consumer-based brand equity. The success of the brand and consumer appreciation for it may not be adequately attributed specifically to the brand in the marketplace but apparently more to other marketing activities in its name (i.e., marketing efforts do not help to enhance the brand).

The degree of correlation between CBBE and SBBE may be moderated by characteristics of product category. Following the salient difference cited above between dimensions of BAV in relation to SBBE, the researchers identify two separate factors of BAV: relevant stature (relevance + esteem + knowledge) and (energized) differentiation [7].

In more concentrated product categories (i.e., the four largest brands by market share hold a greater total share of the category), the positive effect of brand stature on SBBE is reduced. Relevance, esteem and knowledge may serve as particularly useful cues by consumers in fragmented markets, where it is more necessary for them to sort and screen among many smaller brands, thus to simplify the choice decision process. When concentration is greater, reliance on such cues is less required. On the other hand, when the category is more concentrated, controlled by a few big brands, it should be easier for consumers to compare between them and find aspects on which each brand is unique or superior. Indeed, Datta and colleagues find that in categories with increased concentration, differentiation has a stronger positive effect on SBBE.

For products characterised by greater social or symbolic value (e.g., more visible to others when used, shared with others), higher brand stature contributes to higher SBBE in the market. The researchers could not confirm, however, that differentiation manifests in higher SBBE for products of higher social value. The advantage of using brands better recognized and respected by others appears to be primarily associated with facets such as relevance and esteem of the brand.

Brand experience with hedonic products (e.g., leisure, entertainment, treats) builds on enjoyment, pleasure and additional positive emotions the brand succeeds in evoking in consumers. Sensory attributes of the product (look, sound, scent, taste, touch) and holistic image are vital in creating a desirable experience. Contrary to expectation of Datta and colleagues, however, it was not found that stature translates to higher SBBE for brands of hedonic products (even to the contrary). This is not so good news for experiential brands in these categories that rely on enhancing relevance and appeal to consumers, who also understand the brands and connect with them, to create sales-based brand equity in the marketplace. The authors suggest in their article that being personally enjoyable (inward-looking) may overshadow the importance of broad appeal and status (outward-looking) for SBBE. Nevertheless, fortunately enough, differentiation does matter for highlighting benefits of the experience of hedonic products, contributing to a raised sales-based brand equity (SBBE).

Datta, Ailawadi and van Heerde proceeded to examine how strongly CBBE corresponds with behavioural responses in the marketplace (elasticities) as manifestation of the anticipated impact of brand equity.

Results indicated that when relevant stature of a brand is higher consumers respond favourably even more strongly to price discounts or deals  (i.e.,  elasticity of response to promotional prices is further more negative or inverse). Yet, the expectation that consumers would be less sensitive (adverse) to increased regular prices by brands of greater stature was not substantiated (i.e., expected positive effect: less negative elasticity). (Differentiation was not found to have a positive effect on response to regular prices either, and could be counter-conducive for price promotions.)

An important implication of brand equity should be that consumers are more willing to pay higher regular prices for a brand of higher stature (i.e., a larger price premium) relative to competing brands, and more forgiving when such a brand sees it necessary to update and raise its regular price. The brand may benefit from being more personally relevant to the consumer, better understood and more highly appreciated. A brand more clearly differentiated from competitors with respect to its advantages could also benefit from a protected status. All these properties are presumed to enhance attachment to a brand, and subsequently lead to greater loyalty, making consumers more ready to stick with the brand even as it becomes more expensive. This research disproves such expectations. Better responsiveness to price promotions can help to increase sales and revenue, but it testifies to the heightened level of competition in many categories (e.g., FMCG or packaged goods) and propensity of consumers to be more opportunistic rather than to the strength of the brands. This result, actually a warning signal, cannot be brushed away easily.

  • Towards the end of the article, the researchers suggest as explanation that they ignored possible differences in response to increases and decreases in regular prices (i.e., asymmetric elasticity). Even so, increases in regular prices by stronger brands are more likely to happen than price decreases, and the latter already are more realistically accounted for in response to promotional prices.

Relevant stature is positively related to responsiveness to feature or promotional display (i.e., consumers are more inclined to purchase from a higher stature brand when in an advantaged display). Consumers also are more strongly receptive to larger volume of advertising by brands of higher stature and better differentiation in their eyes (this analysis could not refer to actual advertising messages and hence perhaps the weaker positive effects). Another interesting finding indicates that sensitivity to degree of distribution (on-shelf availability) is inversely associated with stature — the higher the brand stature from consumer viewpoint, larger distribution is less attractive to the consumers. As the researchers suggest, consumers are more willing to look harder and farther (e.g., in other stores) for those brands regarded more important for them to have. So here is a positive evidence for the impact of stronger brands or higher brand equity.

The research gives rise to some methodological questions on measurement of brand equity that remain open for further deliberation:

  1. Should the measure of brand equity in choice models rely only on a brand-specific intercept (expressing intrinsic assets or value of the brand) or should it include also a reflection of the impact of brand equity as in response to marketing mix activities?
  2. Are attitudinal measures of brand equity (CBBE) too gross and not sensitive enough to capture the incremental value added by the brand or is the measure of brand equity based only on a brand-intercept term in a model of actual purchase data too specific and narrow?  (unless it accounts for some of the impact of brand equity)
  3. How should measures of brand equity based on stated-choice (conjoint) data and actual purchase data be classified with respect to a consumer perspective? (both pertain really to consumers: either their cognition or overt behaviour).

Datta, Ailawadi and van Heerde throw light in their extensive research on the relation of consumer-based equity (CBBE) to behavioural outcomes, manifested in brand equity based on actual purchases (SBBE) and in effects on response to marketing mix actions as an impact of brand equity. Attention should be awarded to positive implications of this research for practice but nonetheless also to the warning alerts it may signal.

Ron Ventura, Ph.D. (Marketing)


[1] How Well Does Consumer-Based Brand Equity Align with Sales-Based Brand Equity and Marketing-Mix Response?; Hannes Datta, Kusum L. Ailawadi, & Harald J. van Heerde, 2017; Journal of Marketing, 81 (May), pp. 1-20. (DOI: 10.1509/jm.15.0340)

[2] Brands and Branding: Research Findings and Future Priorities; Kevin L. Keller and Donald R. Lehmann, 2006; Marketing Science, 25 (6), pp. 740-759. (DOI: 10.1287/mksc.1050.0153)

[3] Developing and Validating a Multidimensional Consumer-Based Brand Equity Scale; Boonghee Yoo and Naveen Donthu, 2001; Journal of Business Research, 52, pp. 1-14.

[4]  Developing and Validating Measures of Facets of Customer-Based Brand Equity; Richard G. Netemeyer, Balaji Krishnan, Chris Pullig, Guangping Wang,  Mahmet Yageci, Dwane Dean, Joe Ricks, & Ferdinand Wirth, 2004; Journal of Business Research, 57, pp. 209-224.

[5] The authors name this dimension ‘energised differentiation’ in reference to an article in which researchers Mizik and Jacobson identified a fifth pillar of energy, and suggest that differentiation and energy have since been merged. However, this change is not mentioned or revealed on the website of BAV Group.

[6] A Conjoint Approach for Consumer- and Firm-Level Brand Valuation; Madiha Ferjani, Kamel Jedidi, & Sharan Jagpal, 2009; Journal of Marketing Research, 46 (December), pp. 846-862.

[7] These two factors (principal components) extracted by Datta et al. are different from two higher dimensions defined by BAV Group (stature = esteem and knowledge, strength = relevance and differentiation). However, the distinction made by the researchers as corroborated by their data is more meaningful  and relevant in the context of this study.


Read Full Post »

‘Where do I find umbrellas?’ ‘How do I get to the shoe department?’ Questions like this are likely familiar to many consumers when visiting large department stores. Walking long pathways on a floor and moving between floors in a quest to find a needed product can be time-consuming and annoying. Signposts often are too general and lack useful instructions for direction. Mobile mapping applications (‘apps’) of indoors environments, an evolving technological development of the last five years, can make the shopping experience in large stores more smooth, convenient and enjoyable for consumers. A mapping app can be useful not only in department stores but also within large supermarkets, fashion, toys or DIY stores, to give just a few examples. Moreover, navigating in complex structures like shopping malls, airports, hospitals etc. may be made much easier with a mapping app.

Over the years large physical floor maps have been installed in some department stores (e.g., hung on the wall near a lift) — the problem is that the shopper has to try to keep in memory the route to pass to a desired destination. Signage of product directories placed in front of escalators may help the shopper to find on what floor a particular type of product (or a brand) is placed, but one may be left again to stroll a widespread floor until locating the product requested. Signs hung above aisles (e.g., in supermarkets) may not be seen until one approaches the relevant aisle. Some retailers and operators of shopping centres provide printed maps on cards or leaflets to guide their customers on the premises; the map is usually accompanied with index lists and codes for reference, and regions on the map diagram may be printed in different colours to facilitate navigation. Holding a map in the shopper’s hands can be a great relief. Holding a dynamic and interactive map displayed on the shopper’s mobile phone seems as an even greater step forward.

Mapping applications of enclosed environments aim to provide people with spatial information and tools similar to those that facilitate their navigation on roads and in the streets of cities. One can search for an address, a business or an institute, and the mapping utility will show the user its location on the map. Additionally, when used on a mobile device, smartphone or tablet, the application can show the way and follow the user until he or she gets to the destination. In-store, the ‘address’ would typically be a product. An in-store mapping app may show the shopper the location of the product in the store, and perhaps give instructions step-by-step how to get there, yet it will not necessarily be able to follow the user to the destination — an additional layer of technology, a physical infrastructure, is required to locate the shopper on the map and automatically “advance” the map on display as he or she walks in the store.

  • A web-based mapping utility of Heathrow Airport (London), for example, allows a prospect traveller to look for a starting point and a destination in any of the five terminals and their facilities and the online service will provide instructions in text and over the map diagram how to get there.

The GPS technology that usually allows the positioning of users on a map of an outdoors space, and follows the user until he or she gets to a destination, stops working when one enters an enclosed environment of a building. It is additionally not accurate enough to pinpoint the location of a person in a relatively small area, and especially is impractical in distinguishing between floors in the building. Therefore, this technology cannot be applied in mapping applications either in shopping centres or in-store. Alternative technologies have been tested and utilised for indoors mapping: more notable is Bluetooth technology applied with beacons, but there are other options in the field, including Wi-Fi and LED light bulbs for signalling and transmitting location information. Effective positioning of shoppers is said to require a dense network of devices (transmitters) throughout the store, oftentimes an expensive enterprise. Therefore, retailers appear to be more interested in implementing select functions of in-store mapping applications (e.g., orientation, promotions) but are less in a hurry to adopt also the capability of positioning shoppers on a map of the store.

A retailer can deliver via a mobile app promotional offers (e.g., digital coupons) to shoppers as well as updates on new products, services and events. A retail app may  include a bundle of services such as tools for mapping and managing a shopping list for the benefit of the customers. Some retailers already use a location functionality in their stores, independent of mapping, to improve the timing when offers are sent to shoppers during their visit, specific to their location in the store. But this functionality usually utilises fewer devices (e.g., beacons) than would be necessary for a full positioning capability. The mapping tools can produce several advantages: (1) deliver a helpful service to shoppers (e.g., using a shopping list with a map); (2) enhance navigation by location of the shopper on a dynamic map; (3) give a better incentive to shoppers to authorise an app to track their location in the store; (4) mount ‘flags’ of promotional offers for various products on the map near the relevant aisles or display shelves, particularly as the shopper approaches nearby (as a benchmark for illustration, think of information [icons & text] mounted on maps of Google or in an app like Waze).

The map is meant to provide first of all spatial information. Should mapping applications also be visuospatial, that is, display a visual image of the store’s appearance? It would be like making a virtual simulated tour of the store. The experience could be more entertaining (e.g., like gaming) but would it be more informative and useful? If the shopper is already in the store, he or she should not really need the enhanced display — it could be more confusing (screen and reality may interfere with each other) and time-consuming to navigate with such a display. The enhanced imagery display may be useful for planning a visit before entering the store, or perhaps for online shopping in a virtual store. Yet, once a shopper is at the physical store, a visuospatial display should be made an option as a matter of discretion by the shopper while the main display better be a map diagram that matches the actual layout and organisation of the store.

  • Mobile marketing company aisle411, which specialises also in indoors mapping for retail stores, created in co-operation with Google’s Project Tango a 3D imaged environment (“3D mapping”) of a supermarket store with features of augmented reality (e.g., product information. rewards and coupons). [BusinessWire.com, 25 June 2014, see video demonstration — note that the application is operating on a tablet mounted on the shopping cart]

A study published last year (Ertekin, Pryor & Pelton, Spring 2017) sought to identify perceptions, attitudes or personality traits that could motivate consumers to use mobile in-store mapping applications (*). The study focused on consumers from generations X (born in 1961-1979) and Y (born in 1980-1999 — adults likely to be familiar with and orientated to using computer technology and its applications). Actually 80% of the respondents in the sample were of generation Y. All respondents (n=258) had a device that can connect to the Internet (57% had a mapping application downloaded to their smartphone). The researchers considered factors regarding the use of technology of in-store mapping applications and how it would affect the shopping experience (30% of respondents reported trying an in-store mapping application before).

The degree of ease-of-use of an in-store mapping app was found to have a positive effect on intention (or ‘propensity’) to use it while shopping. Perceived ease-of-use was defined as the “degree to which a person believes that using a particular system would be free of effort” (e.g., easy to use, clear and understandable, flexible to interact with). Usefulness of the app pertains specifically to the act of shopping, helping to enhance the ‘job performance’ (effectiveness) of shopping with the map. As expected, perceived usefulness also had a positive effect on the intention to use such an app.

In addition to those functional or utilitarian benefits of the application, the researchers addressed the app’s ability to make the shopping experience emotionally more entertaining (particularly inducing excitement associated with novelty of the technology). Entertainment benefits (e.g., enjoyable learning about stores, fun, or merely a good pass time when bored) also strengthen the intention to use an in-store mapping app.

The willingness to use a mobile in-store mapping app is diminished by greater concern of consumers about sacrificing their security when using a network computing application (i.e., emphasis on protection from malicious software or stealing personal information). Conspicuously, however, reference to data security is only hinted and the sensitive matter of privacy is not properly covered, particularly the reluctance of consumers to let their moves being tracked. If the mapping app provides the user more perceived benefits of the types cited above, they may be less resistant to allow the retailer to track them.

A result that would probably be of interest to retailers shows that consumers who exhibit a stronger deal proneness are more intent on using an in-store mapping app. In other words, consumers who are more leaning towards buying on discounts and deals are more likely to be attracted to the mapping app in hope of finding there promotional offers, easy to locate in the store. Yet retailers should be careful about this finding because if they are too focused on delivering promotional offers through their apps, then they will get shoppers more interested in deals and reward points more frequently than other shoppers. In order to encourage shoppers to extend their in-store visits longer and make more unplanned purchases, promotional offers should be put forward on the app more closely in accordance with the store sections or aisles the shoppers access, when they pass through; where feasible, generate offers in association with products on a shopping list the shopper fills-in on the app (i.e., help a shopper find more easily the products on his or her list while adding products that are more likely to be perceived as complements to them).  Promotions are only one of the ways to encourage consumers to shop more, and that is true also for the ‘package’ offered in a retail mapping app.

The model analysed in this study did not provide support for a positive effect of being pressed in time on intention to use an in-store mapping app  (i.e., apps are not associated enough with saving time or those pressed in time are interested in the mapping app no more than others with more free time). It does not seem to give ground to a concern of retailers that such an app might allow shoppers to shorten their shopping trips, but as suggested above, if needed there are ways to circumvent such behaviour. The model also did not support the hypothesis that consumers who like to gather more market information (e.g., products, prices, innovations) and share their knowledge with others, to advise or actually influence them, are more inclined to use an in-store mapping app to accomplish their goals.

The study makes early steps in investigating consumer behaviour pertaining to using retail mapping apps. It confirms that functional as well as emotional benefits are drivers of consumer use of a mapping app in-store. But the investigation has to proceed to validate and refine those findings and conclusions. While the study targeted young consumers of relevant generations Y and X, the sample consisted of university students (hence probably also the vast majority of millennials). It may be sufficient for establishing relations of the tested factors to the use of mapping apps, but further research should go beyond a student population to cover consumers of these generations to validate the relations or effects. Additional analyses and models (beyond the regression model applied in this study) will have to examine effects more thoroughly or with greater scrutiny (e.g., causality, mediators). Furthermore, consumer disposition towards the mapping apps has to be examined through actual experience and behaviour, for example by letting shoppers perform their shopping ‘naturally’ with an app or by giving them specific tasks to perform with a mapping app in their shopping trip. The study of Ertekin, Pryor and Pelton would serve as an instructive and helpful starting point.

Consumers may utilise a mental map of a store site that they hold in memory to guide them through locations in the  store as in an auto-pilot mode. Mental maps are possible to construct, however, for stores that shoppers visit frequently enough or regularly. Digital mapping apps may change how consumers construct and utilise their own mental maps, stored in their long-term memory. People tend to favour digital information sources and rely less on their own memory. A shopper may need no more than a graph as a spatial model to perform his or her shopping job, or perhaps a more detailed mental model of a drawing similar to a map. Yet the extent to which people also use picture-like mental imageries of the site depends on how useful is the visual information for performing their task, because visual imagery requires greater resources. So visual imagery may be re-constructed more selectively as needed — think of ‘photos’ of specific locations of importance or interest to the shopper (e.g., shelf displays of ‘target’ products) pinned to the mental drawing at the relevant places. A conception like this may be emulated in the digital in-store maps of mobile applications.

Mobile in-store mapping applications present a significant, promising development in re-shaping consumer shopping experiences. It could play an important role in the future of retailing, but there is still ambiguity about the extent to which large retailers would choose to implement mapping features and capabilities, particularly the real-time positioning of shoppers inside a physical store. Mapping applications for retail indoors sites may impact, for example, the balance in preference of consumers between shopping online and offline (i.e., in brick-and-mortar stores).

Ron Ventura, Ph.D. (Marketing)

(*) An Empirical Study of Consumer Motivations to Use In-Store Mapping Application; Selcuk Ertekin, Susie Pryor, & Lou E. Pelton, 2017; Marketing Management Journal, 27 (1), pp. 63-74.



Read Full Post »

Fifteen years have passed since a Nobel Prize in economics was awarded to Daniel Kahneman to this time (Fall 2017) when another leading researcher in behavioural economics, Richard Thaler, wins this honourable prize. Thaler and Kahneman are no strangers — they have collaborated in research in this field from its early days in the late 1970s. Moreover, Kahneman together with the late Amos Tversky helped Thaler in his first steps in this field, or more generally in meeting economics with psychology. Key elements of Thaler’s theory of Mental Accounting are based on the value function in Kanheman and Tversky’s Prospect theory.

In recent years Thaler is better known for the approach he devised of choice architecture and the tools of nudging, as co-author of the book “Nudge: Improving Decisions About Health, Wealth and Happiness” with Cass Sunstein (2008-9). However, at the core of the contribution of Thaler is the theory of mental accounting where he helped to lay the foundations of behavioural economics. The applied tools of nudging are not appropriately appreciated without understanding the concepts of mental accounting and other phenomena he studied with colleagues which describe deviations in judgement and behaviour from the rational economic model.

Thaler, originally an economist, was unhappy with predictions of consumer choice arising from microeconomics — the principles of economic theory were not contested as a normative theory (e.g., regarding optimization) but claims by economists that the theory is able to describe actual consumer behaviour and predict it were put into question. Furthermore, Thaler and others early on argued that deviations from rational judgement and choice behaviour are predictable.  In his ‘maverick’ paper “Toward a Positive Theory of Consumer Choice” from 1980, Thaler described and explained deviations and anomalies in consumer choice that stand in disagreement with the economic theory. He referred to concepts such as framing of gains and losses, the endowment effect, sunk costs, search for information on prices, regret, and self-control (1).

The theory of mental accounting developed by Thaler thereafter is already an integrated framework that describes how consumers perform value judgements and make choice decisions of products and services to purchase while recognising psychological effects in making economic decisions (2).  The theory is built around three prominent concepts (described here only briefly):

Dividing a budget into categories of expenses: Consumers metaphorically (but sometimes physically) allocate the money of their budget into buckets or envelopes according to type or purpose of expenses. It means that they do not transfer money freely between categories (e.g., food, entertainment). This concept contradicts the economic principle of fungibility, thus suggesting that one dollar is not valued the same in every category. A further implication is that each category has a sub-budget allotted to it, and if expenses in the category during a period surpass its limit, a consumer will prefer to give up on the next purchase and refrain from adding money from another category. Hence, for instance,  Dan and Edna will not go out for dinner at a trendy restaurant if that requires taking money planned for buying shoes for their child. However, managing the budget according to the total limit of income in each month is more often unsatisfactory, and some purchases can still be made on credit without hurting other purchases in the same month. On the other hand, it can readily be seen how consumers get into trouble when they try to spread too many expenses across future periods with their credit cards, and lose track of the category limits for their different expenses.

Segregating gains and integrating losses: In the model of a value function by Kahneman and Tversky, value is defined upon gains and losses as one departs from a reference point (a “status quo” state). Thaler explicated in turn how properties of the gain-loss value function would be implemented in practical evaluations of outcomes. The two general “rules”, as demonstrated most clearly in “pure” cases, say: (a) if there are two or more gains, consumers prefer to segregate them (e.g., if Chris makes gains on two different shares on a given day, he will prefer to see them separately); (b) if there are two or more losses, consumers prefer to integrate them (e.g., Sarah is informed of a price for an inter-city train trip but then told there is a surcharge for travelling in the morning — she will prefer to consider the total cost for her requested journey). Thaler additionally proposed what consumers would prefer doing in more complicated cases of “mixed” gains and losses, whether to segregate between the gain and loss (e.g., if the loss is much greater than the gain) or integrate them (e.g., if the gain is larger than the loss so that one remains with a net gain).

Adding-up acquisition value with transaction value to evaluate product offers: A product or service offer generally exhibits in it benefits and costs to the consumer (e.g., the example of a train ticket above overlooked the benefit of the travel to Sarah). But value may arise from the offering or deal itself beyond the product per se. Thaler recognised that consumers may look at two sources of value, and composing or adding them together would yield the overall worth of a product purchase offer: (1) Acquisition utility is the value of a difference between the [monetary] value equivalent of a product to the consumer and its actual price; (2) Transaction utility is the value of a difference between the actual price and a reference price. In the calculus of value, hides the play of gains and losses. This value concept was quite quickly adopted by consumer and marketing researchers in academia and implemented in means-end models that depict chains of value underlying the purchase decision process of consumers (mostly in the mid-1980s to mid-1990s). Thaler’s approach to ‘analysing’ value is getting more widely acknowledged and applied also in practice, as expressions of value as such in consumer response to offerings can be found in so many domains of marketing and retailing.

A reference price may receive different representations, for instance: the price last paid; price recalled from a previous period; average or median price in the same product class; a ‘normal’ or list price; a ‘fair’ or ‘just’ price (which is not so easy to specify). The transaction value may vary quite a lot depending on the form of reference price a consumer uses, ceteris paribus, and hence affect how the transaction value is represented (i.e., as a gain or a loss and its magnitude). Yet, it also suggests that marketers may hint to consumers a price to be used as a reference price (e.g., an advertised price anchor) and thus influence consumers’ value judgements.

We often observe and think of discounts as a difference between an actual price (‘only this week’) and a higher normal price — in this case we may construe the acquisition value and transaction value as two ways to perceive gain on the actual price concurrently. But the model of Thaler is more general because it recognizes a range of prices that may be employed as a reference by consumers. In addition, a list price may be suspected to be set higher to invoke in purpose the perception of a gain vis-à-vis the actual discounted price which in practice is more regular than the list price. A list price or an advertised price may also serve primarily as a cue for the quality of the product (and perhaps also influence the equivalent value of the product for less knowledgeable consumers), while an actual selling price provides a transaction value or utility. In the era of e-commerce, consumers also appear to use the price quoted on a retailer’s online store as a reference; then they may visit one of its brick-and-mortar stores, where they hope to obtain their desired product faster, and complain if they discover that the price for the same product in-store is much higher. Where customers are increasingly grudging over delivery fees and speed, a viable solution to secure customers is to offer a scheme of ‘click-and-collect at a store near you’. Moreover, when more consumers shop with a smartphone in their hands, the use of competitors’ prices or even the same retailer’s online prices as references is likely to be even more frequent and ubiquitous.

  • The next example may help further to illustrate the potentially compound task of evaluating offerings: Jonathan arrives to the agency of a car dealer where he intends to buy his next new car of favour, but there he finds out that the price on offer for that model is $1,500 higher than a price he saw two months earlier in ads. The sales representative claims prices by the carmaker have risen lately. However, when proposing a digital display system (e.g., entertainment, navigation, technical car info) as an add-on to the car, the seller proposes also to give Jonathan a discount of $150 on its original price tag.
  • Jonathan appreciates this offer and is inclined to segregate this saving apart from the additional pay for the car itself (i.e., ‘silver-lining’). The transaction value may be expanded to include two components (separating the evaluations of the car offer and add-on offer completely is less sensible because the add-on system is still contingent on the car).

Richard Thaler contributed to the revelation, understanding and assessment of implications of additional cognitive and behavioural phenomena that do not stand in line with rationality in the economic sense. At least some of those phenomena have direct implications in the context of mental accounting.

One of the greater acknowledged phenomena by now is the endowment effect. It is the recognition that people value an object (product item) already in their possession more than when having the option of acquiring the same object. In other words, the monetary compensation David would be willing to accept to give up on a good he holds is higher than the amount he would agree to pay to acquire it —  people principally have a difficulty to give up on something they own or endowed with (no matter how they originally obtained it). This effect has been most famously demonstrated with mugs, but to generalise it was also tested with other items like pens. This effect may well squeeze into consumers’ considerations when trying to sell much more expensive properties like their car or apartment, beyond an aim to make a financial gain. In his latest book on behavioural economics, ‘Misbehaving’, Thaler provides a friendly explanation with graphic illustration as to why fewer transactions of exchange occur between individuals who obtain a mug and those who do not, due to the endowment effect vis-à-vis a prediction by economic theory (3).

Another important issue of interest to Thaler is fairness, such as when it is fair or acceptable to charge a higher price from consumers for an object in shortage or hard to obtain (e.g., shovels for clearing snow on the morning after a snow storm). Notably, the perception of “fairness” may be moderated depending on whether the rise in price is framed as a reduction in gain (e.g., a discount of $2o0 from list price being cancelled for a car in short supply) or an actual loss (e.g., an explicit increase of $200 above the list price) — the change in actual price is more likely to be perceived as acceptable in the former case than the latter (4). He further investigated fairness games (e.g., Dictator, Punishment and Ultimatum). Additional noteworthy topics he studied are susceptibility to sunk cost and self-control.

  • More topics studied by Thaler can be traced by browsing his long list of papers over the years since the 1970s, and perhaps more leisurely through his illuminating book: “Misbehaving: The Making of Behavioural Economics” (2015-16).

The tactics of nudging, as part of choice architecture, are based on lessons from the anomalies and biases in consumers’ procedures of judgement and decision-making studied by Thaler himself and others in behavioural economics. Thaler and Sunstein looked for ways to guide or lead consumers to make better choices for their own good — health, wealth and happiness — without attempting to reform or alter their rooted modes of thinking and behaviour, which most probably would be doomed to failure. Their clever idea was to work within the boundaries of human behaviour to modify it just enough and in a predictable way to put consumers on a better track to a choice decision. Nudging could mean diverting a consumer from his or her routine way of making a decision to arrive to a different, expectedly better, choice outcome. It often likely involves taking a consumer out of his or her ‘comfort zone’. Critically important, however, Thaler and Sunstein conditioned in their book ‘Nudge’ that: “To count as a mere nudge, the intervention must be easy and cheap to avoid. Nudges are not mandates“. Accordingly, nudging techniques should not impose on consumers the choice of any designated or recommended options (5).

Six categories of nudging techniques are proposed: (1) defaults; (2) expect errors; (3) give feedback; (4) understanding “mappings”; (5) structure complex choices; and (6) incentives. In any of these techniques, the intention is to allow policy makers to direct consumers to choices that improve the state of consumers. Yet, the approach they advocate of ‘libertarian paternalism’ is not received without contention —  while libertarian, that is without coercing a choice, a question remains what gives an agency or policy maker the wisdom and right to determine which options should be better off for consumers (e.g., health plans, saving and investment programmes). Thaler and Sunstein discuss the implementation of nudging mostly in the context of public policy (i.e., by government agencies) but these techniques are applicable just as well to plans and policies of private agencies or companies (e.g., banks, telecom service providers, retailers in their physical and online stores). Nevertheless, public agencies and even more so business companies should devise and apply any measures of nudging to help consumers to choose the better-off and fitting plans for them; it is not for manipulating the consumers or taking advantage of their human errors and biases in judgement and decision-making.

Richard Thaler reviews and explains in his book “Misbehaving” the phenomena and issues he has studied in behavioural economics through the story of his rich research career — it is an interesting, lucid and compelling story. He tells in a candid way about the stages he has gone through in his career. Most conspicuously, this story also reflects the obstacles and resistance that faced behavioural economists for at least 25-30 years.

Congratulations to Professor Richard Thaler, and to the field of behavioural economics to which he contributed wholesomely, in theory and in its application.    

Ron Ventura, Ph.D. (Marketing)


(1) Toward a Positive Theory of Consumer Choice; Richard H. Thaler, 1980/2000; in Choices, Values and Frames (eds. Daniel Kahneman and Amos Tversky)[Ch. 15: pp. 269-287], Cambridge University Press. (Originally published in Journal of Economic Behaviour and Organization.)

(2) Mental Accounting and Consumer Choice; Richard H. Thaler, 1985; Marketing Science, 4 (3), pp. 199-214.

(3) Misbehaving: The Making of Behavioural Economics; Richard H. Thaler, 2016; UK: Penguin Books (paperback).

(4) Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias; Daniel Kahneman, Jack L. Knetsch, & Richard H. Thaler, 1991/2000; in Choices, Values and Frames (eds. Daniel Kahneman and Amos Tversky)[Ch. 8: pp. 159-170], Cambridge University Press. (Originally published in Journal of Economic Perspectives).

(5) Nudge: Improving Decisions About Health, Wealth, and Happiness; Richard H. Thaler and Cass R. Sunstein, 2009; UK: Penguin Books (updated edition).

Read Full Post »

A shopper may well know what types of products he or she is planning to buy in a store, but what products the shopper will come out with is much less sure. Frequently there will be some additional unplanned products in the shopper’s basket. This observation is more often demonstrated in the case of grocery shopping in supermarkets, but it is likely to hold true also in other types of stores, especially large ones like department stores, fashion stores, and DIY or home improvement stores.

There can be a number of reasons or triggers for shoppers to consider additional products to purchase during the shopping trip itself — products forgotten and reminded of by cues that arise while shopping, attractiveness of visual appearance of product display (‘visual lift’), promotions posted on tags at the product display (‘point-of-purchase’) or in hand-out flyers, and more. The phenomenon of unplanned purchases is very familiar, and the study of it is not new. However, the behaviour of shoppers during their store visit that leads to this outcome, especially the consideration of product categories in an unplanned manner, is not understood well enough. The relatively new methodology of video tracking with a head-mounted small camera shows promise in gaining better understanding of shopper behaviour during the shopping trip; a research article by Hui, Huang, Suher and Inman (2013) is paving the way with a valuable contribution, particularly in shedding light on the relations between planned and unplanned considerations in a supermarket, and the factors that may drive conversion of the latter into purchases (1).

Shopper marketing is an evolving specialisation which gains increasing attention in  marketing and retailing. It concerns activities of consumers performed in a ‘shopper mode’ and is strongly connected with or contained within consumer marketing. Innovations in this sub-field by retailers and manufacturers span digital activities, multichannel marketing, store atmospherics and design, in-store merchandising, shopper marketing metrics and organisation. However, carrying out more effective and successful shopper marketing programmes requires closer collaboration between manufacturers and retailers — more openness to each party’s perspective and priorities (e.g., in interpretation of shopper insights), sharing information and coordination (2).

In-Store Video Tracking allows researchers to observe the shopping trip as it proceeds from the viewpoint of the shopper, literally. The strength of this methodology is in capturing the dynamics of shopping (e.g., with regard to in-store drivers of unplanned purchases). Unlike other approaches (e.g., RFID, product scanners), the video tracking method enables tracking acts of consideration, whether followed or not by purchase (i.e., putting a product item in the shopping cart).

For video tracking, a shopper is asked to wear, with the help of an experimenter, a headset belt that contains the portable video equipment, including a small video camera, a view/record unit, and a battery pack. It is worn like a Bluetooth headset. In addition, the equipment used by Hui et al. included an RFID transmitter that allows to trace the location of the shopper throughout his or her shopping path in a supermarket.

Like any research methodology, video tracking has its strengths and advantages versus its weaknesses and limitations. With the camera it is possible to capture the shopper’s field of vision during a shopping trip; the resulting video is stored in the view/record unit. However, without an eye-tracking (infrared) device, the camera may not point accurately to the positions of products considered (by eye fixation) in the field of vision. Yet, the video supports at least approximate inferences when a product is touched or moved, or the head-body posture and gesture suggest from which display a shopper considers products (i.e., the ‘frame’ closes-in on a section of the display). It is further noted that difficulties in calibrating an eye-tracking device in motion may impair the accuracy of locating fixations. The video camera seems sufficient and effective for identifying product categories as targets of consideration and purchase.

Furthermore, contrary to video filmed from cameras hanging from the ceiling in a store, the head-mounted camera records the scene at eye-level and not from high above, enabling to better notice what the shopper is doing (e.g., in aisles), and it follows the shopper all the way, not just in selected sections of the store. Additionally, using a head-mounted camera is more ethical than relying on surrounding cameras (often CCTV security cameras). On the other hand, head-mounted devices (e.g., camera, eye-tracking), which are not the most natural to wear whilst shopping, raise concerns of sampling bias (self-selection) and possibly causing change in the behaviour of the shopper; proponents argue that shoppers quickly forget of the device (devices are now made lighter) as they engage in shopping, but the issue is still in debate.

Video tracking is advantageous to RFID  and product scanners for the study of unplanned purchase behaviour by capturing acts of consideration: the RFID method alone (3) enables to trace the path of the shopper but not what one does in front of the shelf or stand display, and a scanner method allows to record what products are purchased but not which are considered. The advantage of the combined video + RFID approach according to Hui and his colleagues is in providing them “not only the shopping path but also the changes in the shoppers’ visual field as he or she walks around the store” (p. 449).

The complete research design included two interviews conducted with each shopper-participant — before the shopping trip, as a shopper enters the store, and after, on the way out. In the initial interview, shoppers were asked in which product categories they were planning to buy (aided by a list to choose from), as well as other shopping aspects (e.g., total budget, whether they brought their own shopping list). At the exit the shoppers were asked about personal characteristics, and the experimenters collected a copy of the receipt from the retailer’s transaction log. The information collected was essential for two aspects in particular: (a) distinguishing between planned and unplanned considerations; and (b) estimating the amount of money remaining for the shopper to make unplanned purchases out of the total budget (‘in-store slack’ metric).

237 participants were included in analyses. Overall, shoppers-participants planned to purchase from approximately 5.5 categories; they considered on average 13 categories in total, of which fewer than 5 were planned considerations (median 5.6). 37% of the participants carried a list prepared in advance.

Characteristics influencing unplanned consideration:  The researchers sought first to identify personal and product characteristics that significantly influence the probability of making an unplanned consideration in each given product category (a latent utility likelihood model was constructed). Consequently, they could infer which characteristics contribute to considering more categories in an unplanned manner. The model showed, for instance, that shoppers older in age and female shoppers are likely to engage in unplanned consideration in a greater number of product categories. Inversely, shoppers who are more familiar with a store (layout and location of products) and those carrying a shopping list tend to consider fewer product categories in an unplanned manner.

At a product level, a higher hedonic score for a product category is positively associated with greater incidence of unplanned consideration of it. Products that are promoted in the weekly flyer of the store at the time of a shopper’s visit are also more likely to receive an unplanned consideration from the shopper. Hui et al. further revealed effects of complementarity relations: products that were not planned beforehand for purchase (B) but are closer complementary of products in a ‘planned basket’ of shoppers (A) gain a greater likelihood of being considered in an unplanned manner (‘A –> B lift’).  [The researchers present a two-dimensional map detailing what products are more proximate and thus more likely to get paired together, not dependent yet on purchase of them].

Differences in behaviour between planned and unplanned considerations: Unplanned considerations tend to be made more haphazardly — while standing farther from display shelves and involving fewer product touches; conversely, planned considerations entail greater ‘depth’. Unplanned considerations tend to occur a little later in the shopping trip (the gap in timing is not very convincing). An unplanned consideration is less likely to entail reference to a shopping list — the list serves in “keeping the shopper on task”, being less prone to divert to unplanned consideration. Shoppers during an unplanned consideration are also less likely to refer to discount coupons or to in-store flyers/circulars. However, interestingly, some of the patterns found in this analysis change as an unplanned consideration turns into a purchase.

Importantly, in the outcome unplanned considerations are less likely to conclude with a purchase (63%) than planned considerations (83%). This raises the question, what can make an unplanned consideration result in purchase conversion?

Drivers of purchase conversion of unplanned considerations: Firstly, unplanned considerations that result in a purchase take longer (40 seconds on average) than those that do not (24 seconds). Secondly, shoppers get closer to the shelves and touch more product items before concluding with a purchase; the greater ‘depth’ of the process towards unplanned purchase is characterised by viewing fewer product displays (‘facings’) within the category — the shopper is concentrating on fewer alternatives yet examines those selected more carefully (e.g., by picking them up for a closer read). Another conspicuous finding is that shoppers are more likely to refer to a shopping list during an unplanned consideration that is going to result in a purchase — a plausible explanation is that the shopping list may help the shopper to seek whether an unplanned product complements a product on the list.

The researchers employed another (latent utility) model to investigate more systemically the drivers likely to lead unplanned considerations to result in a purchase. The model supported, for example, that purchase conversion is more likely in categories of  higher hedonic products. It corroborated the notions about ‘depth’ of consideration as a driver to purchase and the role of a shopping list in realising complementary unplanned products as supplements to the ‘planned basket’. It is also shown that interacting with a service staff for assistance increases the likelihood of concluding with a purchase.

  • Location in the store matters: An aisle is relatively a more likely place for an unplanned consideration to occur, and subsequently has a better chance when it happens to result in a purchase. The authors recommend assigning service staff to be present near aisles.

Complementarity relations were analysed once again, this time in the context of unplanned purchases. The analysis, as visualised in a new map, indicates that proximity between planned and unplanned categories enhances the likelihood of an unplanned purchase: if a shopper plans to purchase in category A, then the closer category B is to A, the more likely is the shopper to purchase in category B given it is considered. Hui et al. note that distances in the maps for considerations and for purchase conversion of unplanned considerations are not correlated, implying hence that the unplanned consideration and a purchase decision are two different dimensions in the decision process. This is a salient result because it distinguishes between engaging in consideration and the decision itself. The researchers caution, however, that in some cases the distinction between consideration and a choice decision may be false and inappropriate because they may happen rapidly in a single step.

  • The latent distances in the maps are also uncorrelated with physical distances between products in the supermarket (i.e., the complementarity relations are mental).

The research shows that while promotion (coupons or in-store flyers) for an unplanned product has a significant effect in increasing the probability of its consideration, it does not contribute to probability of its purchase. This evidence furthermore points to a separation between consideration and a decision. The authors suggest that a promotion may attract shoppers to consider a product, but they are mostly uninterested to buy and hence it has no further effect on their point-of-purchase behaviour. The researchers suggest that retailers can apply their model of complementarity to proactively invoke consideration by triggering a real-time promotion on a mobile shopping app for products associated with those on a digital list of the shopper “so a small coupon can nudge this consideration into a purchase”.

But there are some reservations to be made about the findings regarding promotions. An available promotion can increase the probability of a product to be considered in an unplanned manner, yet shoppers are less likely to look at their coupons or flyers at the relevant moment. Inversely, the existence of a promotion does not contribute to purchase conversion of an unplanned consideration but shoppers are more likely to refer to their coupons or flyers during unplanned considerations that result in a purchase.  A plausible explanation to resolve this apparent inconsistency is that reference to a promotional coupon or flyer is more concrete from a shopper viewpoint than the mere availability of a promotion; shoppers may not be aware of some of the promotions the researchers account for. In the article, the researchers do not address directly promotional information that appears on tags at the product display — such promotions may affect shoppers differently from flyers or distributed coupons (paper or digital via mobile app), because tags are more readily visible at the point-of-purchase.

One of the dynamic factors examined by Hui et al. is the ‘in-store slack’, the mental budget reserved for unplanned purchases. Reserving a larger slack increases the likelihood of unplanned considerations. Furthermore, at the moment of truth, the larger is the in-store slack that remains at the time of an unplanned consideration, the more likely is the shopper to take a product from the display to purchase. However, computations used in the analyses of dynamic changes in each shopper’s in-store slack appear to assume that shoppers estimate how much they already spent on planned products in various moments of the trip and are aware of their budget, an assumption not very realistic. The approach in the research is very clever, and yet consumers may not be so sophisticated: they may exceed their in-store slack, possibly because they are not very good in keeping their budget (e.g., exacerbated by use of credit cards) or in making arithmetic computations fluently.

Finally, shoppers could be subject to a dynamic trade-off between their self-control and the in-store slack. As the shopping trip progresses and the remaining in-store slack is expected to shrink, the shopper becomes less likely to allow an unplanned purchase, but he or she may become more likely to be tempted to consider and buy in an unplanned manner, because the strength of one’s self-control is depleted following active decision-making. In addition, a shopper who avoided making a purchase on the last occasion of unplanned consideration is more likely to purchase a product in the next unplanned occasion — this negative “momentum” effect means that following an initial effort at self-control, subsequent attempts are more likely to fail as a result of depletion of the strength of self-control.

The research of Hui, Huang, Suher and Inman offers multiple insights for retailers as well as manufacturers to take notice of, and much more material for thought and additional study and planning. The video tracking approach reveals patterns and drivers of shopper behaviour in unplanned considerations and how they relate to planned considerations.  The methodology is not without limitations; viewing and coding the video clips is notably time-consuming. Nevertheless, this research is bringing us a step forward towards better understanding and knowledge to act upon.

Ron Ventura, Ph.D. (Marketing)


(1) Deconstructing the “First Moment of Truth”: Understanding Unplanned Consideration and Purchase Conversion Using In-Store Video Tracking; Sam K. Hui, Yanliu Huang, Jacob Suher, & J. Jeffrey Inman, 2013; Journal of Marketing Research, 50 (August), pp. 445-462.

(2) Innovations in Shopper Marketing: Current Insights and Future Research Issues; Venkatesh Shankar, J. Jeffrey Inman, Murali Mantrala, & Eileen Kelley, 2011; Journal of Retailing, 87S (1), pp. S29-S42.

(3) See other research on path data modelling and analysis in marketing and retailing by Hui with Peter Fader and Eric Bradlow (2009).

Read Full Post »

One of the more difficult and troublesome decisions in brand management arises when entering a product category that is new to the company: Whether to up-start a new brand for the product or to endow it with the identity of an existing brand — that is, extending a company’s established brand from an original product category to a product category of a different type. The first question that would probably pop-up is “how different is the new product?”, acting as a prime criterion to judge whether the parent-brand fits the new product.

Notwithstanding, the choice is not completely ‘black or white’ since intermediate solutions are possible through the intricate hierarchy of brand (naming) architecture. But focusing on the two more distinct strategic branding options above helps to see more clearly the different risk and cost implications of launching a new product brand versus using the name of an existing brand from an original product category. Notably, the manufacturers, retailers and consumers, all perceive risks, albeit from the different perspective of each party given its role.

  • Note: Brand extensions represent the transfer of a brand from one type of product to a different type, to be distinguished from line extensions that pertain to the introduction of variants within the same product category (e.g., flavours, colours).

This is a puzzling marketing and branding problem also from an academic perspective. Multiple studies have attempted in different ways to identify the factors that best explain or account for successful brand extensions. While the stream of research on this topic helpfully points out to major factors, some more commonly agreed upon, a gap remains between the sorts of extensions predicted to succeed according to the studies and the extensions performed by companies that happen to succeed or fail in the markets in reality. A plausible reason for missing the outcomes of actual extensions, as argued by the researchers Milberg, Sinn, and Goodstein (2010), is neglecting the competitive settings in categories that are the target of brand extension (1).

Perhaps one of the most famous examples of a presumptuous brand extension has been the case of Virgin (UK), from music to cola (drink), airline, train transport, and mobile communication (ironically, the origin of the brand as Virgin Music has since been abolished). The success of Virgin’s distant extensions is commonly attributed to the personal character of Richard Branson, the entrepreneur behind the brand: his boldness, initiative, willingness to take risks, and adventurism. These traits seem to have transferred to his business activities and helped to make the extensions more credible and acceptable to consumers.

Another good example relates to Philips (originated in The Netherlands). Starting from lighting (bulbs, now more in LED), the brand extended over the years to personal care (e.g., face shavers for men, hair removal for women), sound and vision (e.g., televisions, DVD and Blue-Ray players, originally in radio sets), PC products, tablets and phones, and more. Still, when looking overall at the different products, systems and devices sharing the Philips brand, they can mostly be linked as members in a broad category of ‘electrics and electronics’, a primary competence of the company. As the company grew with time, launched more types of products whilst advancing with technology, and its Philips brand was perceived as having greater experience and good record in brand extensions, this could facilitate the market acceptance of further extensions to additional products.

  • In the early days of the 1930s to 1950s radio and TV sets relied for operation on vacuum tubes, later moving to electronic circuits with transistors or digital components. Hence, historically there was an apparent physical-technological connection between those products and the brand’s origin in light bulbs, a connection much harder to find now between category extensions, except for the broad category linkage suggested above.

Academic research has examined a range of ‘success factors’ of brand extensions, such as: perceived quality of the parent-brand; fit between the parent-brand and the extension category; degree of difficulty in making an extension (challenge undertaken); parent-brand conviction; parent-brand experience; marketing support; retailer acceptance; perceived risk (for consumers) in adopting the brand extension; consumer innovativeness; consumer knowledge of the parent-brand and category extension; the stage of entry into another category (i.e., as an early or a late entrant). The degree of fit of the parent-brand (and original product) with the extension category is revealed as the most prominent factor contributing to better acceptance and evaluation (e.g., favourability) of the extension in consumer studies.

Aaker and Keller specified in a pioneer article (1990) two requirements for fit: (a) the extension product category is a direct complement or a substitute of the original category; (b) the company, with its people and facilities, is perceived as having the knowledge and capability of manufacturing the product in the extension category. These requirements reflect a similarity between the original and extension product categories that is necessary for successful transfer of a favourable attitude towards the brand to the extension product type (2). A successful transfer of attitude may occur, however, also if the parent-brand has values, purpose or image that seem relevant to the extension product category, even when the technological linkage is less tight or apparent (as the case of Virgin suggests).

  • Aaker and Keller found that fit, based especially on competence, stands out as a contributing factor to higher consumer evaluation (level of difficulty is a secondary factor while perceived quality plays more of a ‘mediating’ role).

Volckner and Sattler (2006) worked to sort out the contributions of ten factors, as retrieved from academic literature, to the success of brand extensions; relations were refined with the aid of expert advice from brand managers and researchers (3). Contribution was assessed in their model in terms of (statistical) significance and relative importance. The researchers found  fit to be the most important factor driving (perceived) brand extension success in their study, followed by marketing support, parent-brand conviction, retail acceptance, and parent-brand experience. The complete model tested for more complex structural relationships represented through mediating and moderating (interacting) factors (e.g., the effect of marketing support on extension success ‘passes’ through fit and retailer acceptance).

For brand extensions to be accepted by consumers and garner a positive attitude, consumers should recognise a connectedness or linkage between the parent-brand and the category extension. The fit between them can be based on attributes of the original and extension types of product or a symbolic association. Keller and Lehmann (2006) conclude in this respect that “consumers need to see the proposed extension as making sense” (emphasis added). They identify product development, applied via brand (and line) extensions, as a primary driver of brand growth, and thereby adding to parent-brand equity. Parent-brands do not tend to be damaged by unsuccessful brand extensions, yet the authors point to circumstances where greater fit may result in a negative effect on the parent-brand, and inversely where joining a new brand name with the parent-brand (as its endorser) may protect the parent-brand from adverse outcomes of extension failure (4).

When assessing the chances of success of a brand extension, it is nevertheless important to consider what brands are already present in the extension category that a company is about to enter. Milberg, Sinn, and Goodstein claim that this factor has not received enough attention in research on brand extensions. In particular, one has to take into account the strength of the parent-brand relative to competing brands incumbent in the target category. As a starting point for entering the extension category, they chose to focus on how well consumers are familiar with the competitor brands vis-à-vis the extending brand.  Milberg and her colleagues proposed that a brand extension can succeed despite a worse fit with the category extension due to an advantage in brand familiarity, and vice versa. Consumer response to brand extensions was tested on two aspects: evaluation (attitude) and perceived risk (5).

First, it should be noted, the researchers confirm the positive effect of better fit on consumer evaluation of the brand extension when no competitors are considered. The better fitting extension is also perceived as significantly less risky than a worse fitting extension. However, Milberg et al. obtain supportive evidence that in a competitive setting, facing less familiar brands can improve the fortune of a worse fitting extension, compared with being introduced in a noncompetitive setting: When the incumbent brands are less familiar relative to the parent-brand, the evaluation of the brand extension is significantly higher (more favourable) and purchasing its product is perceived less risky than if no competition is referred to.

  • A reverse outcome is found in the case of better fit where the competitor brands are more highly familiar: A disadvantage in brand familiarity can dampen the brand extension evaluation and increase the sense of risk in purchasing from the extended brand, compared with a noncompetitive setting.

Two studies performed show how considering differences in brand familiarity can change the picture about the effect of brand extension fit from that often found without accounting for competing brands in the extension category.

When comparing different competitive settings, the research findings provide a more constrained support, but in the direction expected by Milberg and colleagues. The conditions tested entailed a trade-off between (a) a worse fitting brand extension competing with less familiar brands; and (b) a better fitting brand extension competing with more familiar brands. In regard to competitive settings:

The first study showed that the evaluation of a worse fitting extension competing with relatively unfamiliar brands is significantly more favourable than a better fitting extension facing more familiar brands. Furthermore, the product of a worse fitting brand extension is preferred more frequently over its competition than the better fitting extension product is (chosen by 72% vs. 6%, respectively). Also, purchasing a product from the worse fitting brand extension is perceived significantly less risky compared with the better fitting brand. These results indicate that the relative familiarity of the incumbent brands that an extension faces would be more detrimental to its odds of success than how well its fit is.

The second study aimed to generalise the findings to different parent-brands and product extensions. It challenged the brand extensions with somewhat more difficult conditions: it included categories that are all relevant to respondents (students), and so competitor brands in extension categories are also relatively more familiar to them than in the first study. The researchers acknowledge that the findings are less robust with respect to comparisons of the contrasting competitive settings. Evaluation and perceived risk related to the worse fitting brand competing with less familiar brands are equivalent to the better fitting brand extension facing more familiar brands. The gap in choice shares is reduced though in this case it is still statistically significant (45% vs. 15%, respectively). Facing less familiar brands may not improve the response of consumers to the worse fitting brand extension (i.e., not overcoming the effect of fit) but at least it is in a position as good as of the better fitting brand extension competing in a more demanding setting.

  • Perceived risk intervenes in a more complicated relationship as a mediator of the effect of fit on brand extension evaluation, and also in mediating the effect of relative familiarity in competitive settings. Mediation implies, for example, that a worse fitting extension evokes greater risk which is responsible for lowering the brand extension evaluation; consumers may seek more familiar brands to alleviate that risk.

A parent-brand can assume an advantage in an extension category even though it encounters brands that are familiar within that category, and may even be considered experts in the field: if the extending brand is leading within its original category and is better known beyond it, this can give it a leverage on the incumbents if those brands are more ‘local’ or specific to the extension category. For example, it would be easier for Nikon leading brand of cameras to extend to binoculars (better fit) where it meets brands like Bushnell and Tasco than extending to scanners (also better fit) where it has to face brands like HP and Epson. In the case of worse fitting extensions, it could be significant for Nikon whether it extends to CD players and competes with Sony and Pioneer or extends to laser pointers and faces Acme and Apollo — in the latter case it may enjoy the kind of leverage that can overcome a worse fit. (Product and brand examples are borrowed from Study 1). Further research may enquire if this would work better for novice consumers than experts. Milberg, Sinn and Goodstein recommend to consider additional characteristics that brands may differ on (e.g., attitude, image, country of origin), suggesting more potential bases of strength.

Entering a new product category for a company is often a difficult challenge, and choosing the more appropriate branding strategy for launching the product can be furthermore delicate and consequential. If the management chooses to make a brand extension, it should consider aspects of relative strength of its parent-brand, such as familiarity, against the incumbent brands of the category it plans to enter in addition to a variety of other characteristics of product types and its brand identity. However, the managers can take advantage as well of intermediate solutions in brand architecture to combine a new brand name with an endorsement of an established brand (e.g., higher-level brand for a product range). Choosing the better branding strategy may be helped by better understanding of the differences and relations (e.g., hierarchy) between product categories as perceived by consumers.

Ron Ventura, Ph.D. (Marketing)


1. Consumer Reactions to Brand Extensions in a Competitive Context: Does Fit Still Matter?; Sandra J. Milberg, Francisca Sinn, & Ronald C. Goodstein, 2010; Journal of Consumer Research, 37 (October), pp. 543-553.

2.  Consumer Evaluations of Brand Extensions; David A. Aaker and Kevin L. Keller, 1990; Journal of Marketing, 54 (January), pp. 27-41.

3.  Drivers of Brand Extension Success; Franziska Volckner and Henrik Sattler, 2006; Journal of Marketing, 70 (April), pp. 18-34.

4. Brands and Branding: Research Finding and Future Priorities; Kevin L. Keller and Donald R. Lehmann, 2006; Marketing Science, 25 (6), pp. 740-759.

5. Ibid. 1.

Read Full Post »

It is usually not a pleasant feeling to be alone in a scary place or event — think of being stuck in a dark elevator or being involved in a car accident. People commonly seek to be with someone for comfort and company. But the companion does not always have to be another person. A research by Dunn and Hoegg (2014) provides corroboration that the need to share fear matters to humans while the identity of the companion, whether a person or an object, is less critical.  More specifically, sharing fear with a product from an unfamiliar brand may facilitate a quick emotional attachment with that brand without requiring to build a relationship over a lengthy period of time (1).

Fear is evoked by the presence or anticipation of a danger or threat. Feeling fear may be triggered by an unfamiliar event to which one is unsure how to respond (uncertainty) or an unexpected event at a specific moment (surprise); experiencing fear is furthermore likely when the event encountered is both unfamiliar and unexpected. It is important to note, nonetheless, that not every encounter with an unfamiliar or unexpected event necessarily leads to  fear. The Amygdala in the temporal lobe of the brain is the “centre” where fear arises. However, the amygdala like other brain structures is responsible for multiple functions. The amygdala is activated in response to unfamiliarity, unpredictability or ambiguity, but not every instance necessarily means the evocation of fear. For example, tension from facing an unfamiliar problem that one is at loss how to solve may not result in fear. Additionally, fear as well as other states of emotion are the outcome of appraisal of physical feelings (e.g., faster heartbeats, startle, warmth), considering the conditions in which they were triggered; it is a cognitive interpretation of their meaning (“why do I feel that way?”). Activation of other brain structures together with the amygdala may influence whether similar feelings triggered by an unexpected event are interpreted, for instance, as fear, anger, or surprise. The context in which an event occurs can matter a lot for the appraisal of emotions (2).

Dunn and Hoegg emphasise the emotional charge of consumer attachment with a brand versus cognitive underpinnings. Brand attachment has often been conceptualised as the product of a relationship between consumers and the target brand built over time. It should take a longer time to achieve a more solid brand attachment because of cognitive processes for establishing brand connections in memory and stronger favourable brand attitudes. However, this explanation is subject to criticism of missing the important role of emotions in bonding between consumers and a brand which does not necessarily require a long time. By focusing their studies on unfamiliar brands, Dunn and Hoegg intended to show that emotional attachment can emerge much more quickly when the consumers are distressed and are looking for a partner to share their fear with, and that partner or companion can be a brand of a given product.

On the same grounds, the researchers chose a scale of emotional attachment (Thomson, MacInnis and Park, 2005 [3]) as more appropriate over a scale that combines emotional and cognitive aspects of attachment and gives greater weight to cognitive constructs (Park, MacInnis et al., 2010 [4]). The emotional scale comprises three dimensions: (a) Affection (affectionate, friendly, loved, peaceful); (b) Passion (passionate, delighted, captivated); (c) Connection (connected, bonded, attached). Nevertheless, in the later research Park and MacInnis with colleagues offer a broader perspective that accounts for two bases of brand attachment: (i) a connection between self-concept and a brand; and (ii) brand prominence in memory.

While ‘brand prominence’ can be regarded as more cognitive-oriented (accessibility of thoughts and feelings in memory), a ‘brand-self connection’ entails the expansion of one’s concept of self to incorporate others, such as brands, within it — and that involves an emotional element. Park and MacInnis et al. emphasise the brand-self connection as the emotional core of their definition of brand attachment, while brand prominence is a facilitator in actualizing the attachment (analyses substantiate that brand attachment is a better predictor than attitudes of intentions to perform more difficult types of behavior reflecting commitment, and the brand-self connection is more essential for driving this behaviour). The three-dimension scale of emotional brand attachment seems very relevant for the research goals of Dunn and Hoegg, even though it is more restricted from a stand-point of the theoretical roots of brand attachment.

The desire to affiliate with others in scaring and upsetting situations is recognised as a mechanism for coping with negative emotions in those situations. Episodes of armed conflict, terrorist attacks, and natural disasters make people get closer to each other, unite and show solidarity. However, the researchers note that the act of affiliation is essential for coping rather than the affiliation target. That is, the literature on affiliation or attachment relates to interpersonal connections as well as attachment to objects (although objects are viewed as substitutes in absence of other persons [pet animals should also be considered]). We can find support for possible attachment to products and their brands in the human tendency to animate or anthropomorphise objects by assigning them traits of living beings, whether animals or humans. Brands may be animated in order to help consumers relate with them more comfortably, making them appear more vivid to them. It is one of the processes that facilitates the development of consumers’ relationships with their brands in use; consumers connect with brands also through the role brands fulfilled in their personal history, heritage and family traditions, and how brands integrate in their preferred lifestyles (5).

Dunn and Hoegg investigate how consumers connect with a brand on occasions of incidental fear. They make a clear distinction between events that may trigger fear (or other emotions) and fear appeals strategically planned in advertising (e.g., in order to induce a particular desired behaviour). Events that incidentally cause fear would be independent and uncontrolled. Additionally, the intensity and range of emotions felt is expected to differ when consumers actively participate in an event and hence experience it directly in contrast to watching TV ads — in direct consumer experiences, emotional feelings are likely to be more intensive and specific.  In a model for measuring consumption emotions developed and tested by Richins, fear is characterised as a negative and more active (as opposed to receptive) emotion, next to other emotions such as anger, worry, discontent, sadness and shame (6).

  • In their experiments, the researchers try to emulate incidental fear by displaying to participants clips from cinema films or TV series’ episodes, and present evidence that manipulations successfully elicited the intended emotions as dominant in response to each video clip. Yet, it remains somewhat ambiguous how real and direct the experience of watching scenes in a film or a TV programme is perceived and felt with regard to the emotions evoked.

The following are more concrete findings from the studies and their insights:

Emotional brand attachment is generated through perception that the brand shares the fear with the consumer — Study 1 confirms that emotional attachment with an unfamiliar brand is generated when a product (juice) by that brand is present and can be consumed during the fear-inducing experience (more than for emotions of sadness, excitement and happiness). But moreover, it is shown that the emotional attachment is mediated (conditioned) by perception of the consumer that the brand shared the fear with him or her.

Humans precede product brands —  Sharing fear with a brand contributes to stronger emotional brand attachment, but only if they still have a desire generated by fear to affiliate with others. If conversely that desire is satiated by a perception of the consumers that they are already socially affiliated with other people, the effect on brand attachment is muted.

  • Note: Participants in Study 2 were asked to perform a search with words related to feelings of affiliation and social connectedness (e.g., included, accepted, involved) to prime affiliation. Given the statements used to measure (non-)affiliation (e.g., “I feel disconnected from the world around me”), it is a little questionable how effective such a priming condition could be (though the authors show it was sufficient). It might have been more tangible to ask participants to think of people dear to them, family and close friends, and write about them.

Balancing negative and positive emotional effects on attitudes — Based on analyses in Study 2 the researchers also suggest that increased positive effect of emotional brand attachment may counterbalance and override a negative influence of ‘affect transfer’ on attitudes due to fear.

Presence of the brand and attention to it are required yet sufficient — Study 3 demonstrates that neither consumption of the product (juice) nor even touching it (the bottle), both forms of physical interaction, are really needed for feeling affiliated and forming emotional attachment — forced consumption in particular does not contribute to stronger perceived sharing or emotional attachment than merely seeing the product when feeling fear, that is making an eye contact and visually attending to the product in search for a companion. (Unexpectedly, in the case of action and excitement, consuming the drink increases emotional attachment.) Study 4 stresses, nevertheless, that the brand must be present during the emotional event for generating increased emotional attachment — having the brand nearby while experiencing the fear is essential for consumers to feel connected with the brand as their sharing partner (tested with a different product, potato chips).

The research paper suffers from a deficit in practice. That is, marketing managers and professionals might be disappointed to discover that it could be most difficult to have any control of those situations of incidental fear and to act on them to their advantage. In order to have any influence on the consumer a company would be required to anticipate an individual event in advance and to find a way to intervene (i.e., make their product present) without being perceived too intrusive or self-interested — two non-negligible challenges. An additional restriction is posed by the relation of the ‘fear effect’ to brands not previously familiar to the consumers.

Let us consider some potential scenarios where brands might benefit and the difficulties that are likely to arise in implementing it:

Undertaking medical treatments or tests — Some treatments can be alarming and frightening on occasion to different patients. A sense of fear is likely to enter already, and perhaps especially, while waiting. It is a opportunity for introducing the brand-companion in the waiting hall; even more so given that patients are usually not allowed to or prevented from using artifacts during the treatment (mostly no food and drinks). First, a company may have a difficulty to obtain access to places where patients wait for treatment. Second, consumers-patients are likely to bring products with them from home to entertain them (of brands they know). Third, patients often arrive with a family or friend companion, thus satisfying their need for affiliation with another person which dominates affiliation with an object. Still, there is room for ingenuity how to locate the brand close enough to the treatment episode (e.g., shops offering books or toys, especially for children, in the premises of a clinic or hospital).

Trekking or hiking in nature — Some routes, particularly in mountainous areas, can be quite adventurous, not to say dangerous. If a brand could find a way to introduce its product just before the consumer starts the hiking trip, it may benefit from being with him or her if fear arises. One problem is that hikers are advised and even required not to embark alone on more dangerous routes. Another problem is that those trekking or hiking sites often offer local brands, that while not being familiar to the consumers they also are not likely to be available to them at home, and thus the opportunity to develop a relationship based on the early emotional attachment is lost.

Offering legal, financial, insurance, and technical services in events of crisis — In various occasions of accidents, malfunctions, and disasters, people need help to cope with the crisis and the negative emotions it may evoke, particularly fear. A service provider would be expected to counsel the customer in his or her distress, and of course propose a solution (e.g. how to fix one’s home after a fire or an earthquake). Unfortunately,  one cannot make an eye contact with an intangible service. The company has to find creative and practical ways to make itself readily visible and accessible to the consumer when needed by offering instruments and cues for making contact (e.g., an alarm and communication device for the elderly and people with more risky medical conditions).

  • Dunn and Hoegg are aware of the limitation of the findings to unfamiliar brands. They reasonably propose that “because fear leads to a general motivation to affiliate, emotional brand attachment would be enhanced regardless of the familiarity with the brand” (p. 165). It should take further research, however, to substantiate this proposition.

Despite the possible difficulties companies will likely need to deal with, the doors are not completely shut to them to benefit from this phenomenon. But they must come up with creative and non-intursive solutions to make their brands and products present in the right place at the right time. At the very least, marketers should be aware of the potential effect of sharing fear with the consumer and understand how it can work in the brand’s benefit. It is worth remembering, after all, the saying “a friend in need is a friend indeed” whereby in some incidents the friend can be a brand.

Ron Ventura, Ph.D. (Marketing)


(1) “The Effect of Fear on Emotional Brand Attachment”; Lea Dunn and JoAndrea Hoegg, 2014; Journal of Consumer Research, 41 (June), pp. 152-168.

(2) “What Is Emotion?: History, Measures and Meanings”; Jerome Kagan, 2007; New Haven and London: Yale University Press. Also see: “The Experience of Emotion”; Lisa Feldman Barrett, Bejta Mesquita, Kevin N. Ochsner, & James J. Gross, 2007; Annual Review of Psychology, 58, pp. 373-403.

(3) “The Ties That Bind: Measuring the Strength of Consumers’ Emotional Attachments to Brands”; Mathew Thomson, Deborah J. MacInnis, & C. Whan Park, 2005; Journal of Consumer Psychology, 15 (1), pp. 77-91.

(4) “Brand Attachment and Brand Attitude Strength: Conceptual and Empirical Differentiation of Two Critical Brand Equity Drivers”; C. Whan Park, Deborah J. MacInnis, Joseph Priester, Andreas B. Eisengerich, & Dawn Iacobucci, 2010; Journal of Marketing, 74 (November), 1-17.

(5) “Consumers and Their Brands: Developing Relationship Theory in Consumer Research”; Susan Fournier, 1998; Journal of Consumer Research, 24 (March), pp. 343-373.

(6) “Measuring Emotions in the Consumption Experience”; Marsha L. Richins, 1997; Journal of Consumer Research, 24 (September), pp. 127-146.

Read Full Post »

Older Posts »