Feeds:
Posts
Comments

Posts Tagged ‘Metrics & Models’

Revelations about the Facebook – Cambridge Analytica affair last month (March 2018) invoked a heated public discussion about data privacy and users’ control over their personal information in social media networks, particularly in the domain of Facebook. The central allegation in this affair is that personal data in social media was misused for the winning political presidential campaign of Donald Trump. It offers ‘juicy’ material for all those interested in American politics. But the importance of the affair goes much beyond that, because impact of the concerns it has raised radiates to the daily lives of millions of users-consumers socially active via the social media platform of Facebook; it could touch potentially a multitude of commercial marketing contexts (i.e., products and services) in addition to political marketing.

Having a user account as member of the social media network of Facebook is pay free, a boon hard to resist. Facebook surpassed in Q2 of 2017 the mark of two billion active monthly users, double a former record of one billion reached five years earlier (Statista). No monetary price requirement is explicitly submitted to users. Yet, users are subject to alternative prices, embedded in the activity on Facebook, implicit and less noticeable as a cost to bear.

Some users may realise that advertisements they receive and see is the ‘price’ they have to tolerate for not having to pay ‘in cash’ for socialising on Facebook. It is less of a burden if the content is informative and relevant to the user. What users are much less likely to realise is how personally related data (e.g., profile, posts and photos, other activity) is used to produce personally targeted advertising, and possibly in creating other forms of direct offerings or persuasive appeals to take action (e.g., a user receives an invitation from a brand, based on a post of his or her friend, about a product purchased or  photographed). The recent affair led to exposing — in news reports and a testimony of CEO Mark Zuckerberg before Congress — not only the direct involvement of Facebook in advertising on its platform but furthermore how permissive it has been in allowing third-party apps to ‘borrow’ users’ information from Facebook.

According to reports on this affair, Psychologist Aleksandr Kogan developed with colleagues, as part of academic research, a model to deduce personality traits from behaviour of users on Facebook. Aside from his position at Cambridge University, Kogan started a company named Global Science Research (GSR) to advance commercial and political applications of the model. In 2013 he launched an app in Facebook, ‘this-is-your-digital-life’, in which Facebook users would answer a self-administered questionnaire on personality traits and some personal background. In addition, the GSR app prompted respondents to give consent to pull personal and behavioural data related to them from Facebook. Furthermore, at that time the app could get access to limited information on friends of respondents — a capability Facebook removed at least since 2015 (The Guardian [1], BBC News: Technology, 17 March 2018).

Cambridge Analytica (CA) contracted with GSR to use its model and data it collected. The app was able, according to initial estimates, to harvest data on as many as 50 million Facebook users; by April 2018 the estimate was updated by Facebook to reach 87 millions. It is unclear how many of these users were involved in the project of Trump’s campaign because CA was specifically interested for this project in eligible voters in the US; it is said that CA applied the model with data in other projects (e.g., pro-Brexit in the UK), and GSR made its own commercial applications with the app and model.

In simple terms, as can be learned from a more technical article in The Guardian [2], the model is constructed around three linkages:

(1) Personality traits (collected with the app) —> data on user behaviour in Facebook platform, mainly ‘likes’ given by each user (possibly additional background information was collected via the app and from the users’ profiles);

(2) Personality traits —> behaviour in the target area of interest — in the case of Trump’s campaign, past voting behaviour (CA associated geographical data on users with statistics from the US electoral registry).

Since model calibration was based on data from a subset of users who responded to the personality questionnaire, the final stage of prediction applied a linkage:

(3) Data on Facebook user behaviour ( —> predicted personality ) —>  predicted voting intention or inclination (applied to the greater dataset of Facebook users-voters)

The Guardian [2] suggests that ‘just’ 32,000 American users responded to the personality-political questionnaire for Trump’s campaign (while at least two million users from 11 states were initially cross-referenced with voting behaviour). The BBC gives an estimate of as many as 265,000 users who responded to the questionnaire in the app, which corresponds to the larger pool of 87 million users-friends whose data was harvested.

A key advantage credited to the model is that it requires only data on ‘likes’ by users and does not have to use other detailed data from posts, personal messages, status updates, photos etc. (The Guardian [2]). However, the modelling concept raises some critical questions: (1) How many repeated ‘likes’ of a particular theme are required to infer a personality trait? (i.e., it should account for a stable pattern of behaviour in response to a theme or condition in different situations or contexts); (2) ‘Liking’ is frequently spurious and casual — ‘likes’ do not necessarily reflect thought-out agreement or strong identification with content or another person or group (e.g., ‘liking’ content on a page may not imply it personally applies to the user who likes it); (3) Since the app was allowed to collect only limited information on a user’s ‘friends’, how much of it could be truly relevant and sufficient for inferring the personality traits? On the other hand, for whatever traits that could be deduced, data analyst and whistleblower Christopher Wylie, who brought the affair out to the public, suggested that the project for Trump had picked-up on various sensitivities and weaknesses (‘demons’ in his words). Personalised messages were respectively devised to persuade or lure voters-users likely to favour Trump to vote for him. This is probably not the way users would want sensitive and private information about them to be utilised.

  • Consider users in need for help who follow and ‘like’ content of pages of support groups for bereaved families (e.g., of soldiers killed in service), combatting illnesses, or facing other types of hardship (e.g., economic or social distress): making use of such behaviour for commercial or political gain would be unethical and disrespectful.

Although the app of GSR may have properly received the consent of users to draw information about them from Facebook, it is argued that deception was committed on three counts: (a) The consent was awarded for academic use of data — users were not giving consent to participate in a political or commercial advertising campaign; (b) Data on associated ‘friends’, according to Facebook, has been allowed at the time only for the purpose of learning how to improve users’ experiences on the platform; and (c) GSR was not permitted at any time to sell and transfer such data to third-party partners. We are in the midst of a ‘blame game’ among Facebook, GSR and CA on the transfer of data between the parties and how it has been used in practice (e.g., to what extent the model of Kogan was actually used in the Trump’s campaign). It is a magnificent mess, but this is not the space to delve into its small details. The greater question is what lessons will be learned and what corrections will be made following the revelations.

Mark Zuckerberg, founder and CEO of Facebook, gave testimony at the US Congress in two sessions: a joint session of the Senate Commerce and Judiciary Committees (10 April 2018) and before the House of Representatives Commerce and Energy Committee (11 April 2018). [Zuckerberg declined a call to appear in person before a parliamentary committee of the British House of Commons.] Key issues about the use of personal data on Facebook are reviewed henceforth in light of the opening statements and replies given by Zuckerberg to explain the policy and conduct of the company.

Most pointedly, Facebook is charged that despite receiving reports concerning GSR’s app and CA’s use of data in 2015, it failed to ensure in time that personal data in the hands of CA is deleted from their repositories and that users are warned about the infringement (before the 2016 US elections), and that it took at least two years for the social media company to confront GSR and CA more decisively. Zuckerberg answered in his defence that Cambridge Analytica had told them “they were not using the data and deleted it, we considered it a closed case”; he immediately added: “In retrospect, that was clearly a mistake. We shouldn’t have taken their word for it”. This line of defence is acceptable when coming from an individual person acting privately. But Zuckerberg is not in that position: he is the head of a network of two billion users. Despite his candid admission of a mistake, this conduct is not becoming a company the size and influence of Facebook.

At the start of both hearing sessions Zuckerberg voluntarily and clearly took personal responsibility and apologized for mistakes made by Facebook while committing to take measures (some already done) to avoid such mistakes from being repeated. A very significant realization made by Zuckerberg in the House is him conceding: “We didn’t take a broad view of our responsibility, and that was a big mistake” — it goes right to the heart of the problem in the approach of Facebook to personal data of its users-members. Privacy of personal data may not seem to be worth money to the company (i.e., vis-à-vis revenue coming from business clients or partners) but the whole network business apparatus of the company depends on its user base. Zuckerberg committed that Facebook under his leadership will never give priority to advertisers and developers over the protection of personal information of users. He will surely be followed on these words.

Zuckerberg argued that the advertising model of Facebook is misunderstood: “We do not sell data to advertisers”. According to his explanation, advertisers are asked to describe to Facebook the target groups they want to reach, Facebook traces them and then does the placement of advertising items. It is less clear who composes and designs the advertising items, which also needs to be based on knowledge of the target consumers-users. However, there seems to be even greater ambiguity and confusion in distinguishing between use of personal data in advertising by Facebook itself and access and use of such data by third-party apps hosted on Facebook, as well as distinguishing between types of data about users (e.g., profile, content posted, response to others’ content) that may be used for marketing actions.

Zuckerberg noted that the ideal of Facebook is to offer people around the world free access to the social network, which means it has to feature targeted advertising. He suggested in Senate there will always be a pay-free version of Facebook, yet refrained from saying when if ever there will be a paid advertising-clear version. It remained unclear from his testimony what information is exchanged with advertisers and how. Zuckerberg insisted that users have full control over their own information and how it is being used. He added that Facebook will not pass personal information to advertisers or other business partners, to avoid obvious breach of trust, but it will continue to use such information to the benefit of advertisers because that is how its business model works (NYTimes,com, 10 April 2018). It should be noted that whereas users can choose who is allowed to see information like posts and photos they upload for display, that does not seem to cover other types of information about their activity on the platform (e.g., ‘likes’, ‘shares’, ‘follow’ and ‘friend’ relations) and how it is used behind the scenes.

Many users would probably want to continue to benefit from being exempt of paying a monetary membership fee, but they can still be entitled to have some control over what adverts they value and which they reject. The smart systems used for targeted advertising could be less intelligent than they purport to be. Hence more feedback from users may help to assign them well-selected adverts that are of real interest, relevance and use to them, and thereof increase efficiency for advertisers.

At the same time, while Facebook may not sell information directly, the greater problem appears to be with the information it allows apps of third-party developers to collect about users without their awareness (or rather their attention). In a late wake-up call at the Senate, Zuckerberg said that the company is reviewing app owners who obtain a large amount of user data or use it improperly, and will act against them. Following Zuckerberg’s effort to go into details of the terms of service and to explain how advertising and apps work on Facebook, and especially how they differ, Issie Lapowsky reflects in the ‘Wired’: “As the Cambridge Analytica scandal shows, the public seems never to have realized just how much information they gave up to Facebook”. Zuckerberg emphasised that an app can get access to raw user data from Facebook only by permission, yet this standard, according to Lapowsky, is “potentially revelatory for most Facebook users” (“If Congress Doesn’t Understand Facebook, What Hope Do Its Users Have”, Wired, 10 April 2018).

There can be great importance to how an app asks for permission or consent of users to pull their personal data from Facebook, how clear and explicit it is presented so that users understand what they agree to. The new General Data Protection Regulation (GDPR) of the European Union, coming into effect within a month (May 2018), is specific on this matter: it requires explicit ‘opt-in’ consent for sensitive data and unambiguous consent for other data types. The request must be clear and intelligible, in plain language, separated from other matters, and include a statement of the purpose of data processing attached to consent. It is yet to be seen how well this ideal standard is implemented, and extended beyond the EU. Users are of course advised to read carefully such requests for permission to use their data in whatever platform or app they encounter them before they proceed. However, even if no information is concealed from users, they may not be adequately attentive to comprehend the request correctly. Consumers engaged in shopping often attend to only some prices, remember them inaccurately, and rely on a more general ‘feeling’ about the acceptable price range or its distribution. If applying the data of users for personalised marketing is a form of price expected from them to pay, a company taking this route should approach the data fairly just as with setting monetary prices, regardless of how well its customers are aware of the price.

  • The GDPR specifies personal data related to an individual to be protected if “that can be used to directly or indirectly identify the person”. This leaves room for interpretation of what types of data about a Facebook user are ‘personal’. If data is used and even transferred at an aggregate level of segments there is little risk of identifying individuals, but for personally targeted advertising or marketing one needs data at the individual level.

Zuckerberg agreed that some form of regulation over social media will be “inevitable ” but conditioned that “We need to be careful about the regulation we put in place” (Fortune.com, 11 April 2018). Democrat House Representative Gene Green posed a question about the GDPR which “gives EU citizens the right to opt out of the processing of their personal data for marketing purposes”. When Zuckerberg was asked “Will the same right be available to Facebook users in the United States?”, he replied “Let me follow-up with you on that” (The Guardian, 13 April 2018).

The willingness of Mark Zuckerberg to take responsibility for mistakes and apologise for them is commendable. It is regrettable, nevertheless, that Facebook under his leadership has not acted a few years earlier to correct those mistakes in its approach and conduct. Facebook should be ready to act in time on its responsibility to protect its users from harmful use of data personally related to them. It can be optimistic and trusting yet realistic and vigilant. Facebook will need to care more for the rights and interests of its users as it does for its other stakeholders in order to gain the continued trust of all.

Ron Ventura, Ph.D. (Marketing)

 

 

 

 

 

Advertisements

Read Full Post »

A shopper may well know what types of products he or she is planning to buy in a store, but what products the shopper will come out with is much less sure. Frequently there will be some additional unplanned products in the shopper’s basket. This observation is more often demonstrated in the case of grocery shopping in supermarkets, but it is likely to hold true also in other types of stores, especially large ones like department stores, fashion stores, and DIY or home improvement stores.

There can be a number of reasons or triggers for shoppers to consider additional products to purchase during the shopping trip itself — products forgotten and reminded of by cues that arise while shopping, attractiveness of visual appearance of product display (‘visual lift’), promotions posted on tags at the product display (‘point-of-purchase’) or in hand-out flyers, and more. The phenomenon of unplanned purchases is very familiar, and the study of it is not new. However, the behaviour of shoppers during their store visit that leads to this outcome, especially the consideration of product categories in an unplanned manner, is not understood well enough. The relatively new methodology of video tracking with a head-mounted small camera shows promise in gaining better understanding of shopper behaviour during the shopping trip; a research article by Hui, Huang, Suher and Inman (2013) is paving the way with a valuable contribution, particularly in shedding light on the relations between planned and unplanned considerations in a supermarket, and the factors that may drive conversion of the latter into purchases (1).

Shopper marketing is an evolving specialisation which gains increasing attention in  marketing and retailing. It concerns activities of consumers performed in a ‘shopper mode’ and is strongly connected with or contained within consumer marketing. Innovations in this sub-field by retailers and manufacturers span digital activities, multichannel marketing, store atmospherics and design, in-store merchandising, shopper marketing metrics and organisation. However, carrying out more effective and successful shopper marketing programmes requires closer collaboration between manufacturers and retailers — more openness to each party’s perspective and priorities (e.g., in interpretation of shopper insights), sharing information and coordination (2).

In-Store Video Tracking allows researchers to observe the shopping trip as it proceeds from the viewpoint of the shopper, literally. The strength of this methodology is in capturing the dynamics of shopping (e.g., with regard to in-store drivers of unplanned purchases). Unlike other approaches (e.g., RFID, product scanners), the video tracking method enables tracking acts of consideration, whether followed or not by purchase (i.e., putting a product item in the shopping cart).

For video tracking, a shopper is asked to wear, with the help of an experimenter, a headset belt that contains the portable video equipment, including a small video camera, a view/record unit, and a battery pack. It is worn like a Bluetooth headset. In addition, the equipment used by Hui et al. included an RFID transmitter that allows to trace the location of the shopper throughout his or her shopping path in a supermarket.

Like any research methodology, video tracking has its strengths and advantages versus its weaknesses and limitations. With the camera it is possible to capture the shopper’s field of vision during a shopping trip; the resulting video is stored in the view/record unit. However, without an eye-tracking (infrared) device, the camera may not point accurately to the positions of products considered (by eye fixation) in the field of vision. Yet, the video supports at least approximate inferences when a product is touched or moved, or the head-body posture and gesture suggest from which display a shopper considers products (i.e., the ‘frame’ closes-in on a section of the display). It is further noted that difficulties in calibrating an eye-tracking device in motion may impair the accuracy of locating fixations. The video camera seems sufficient and effective for identifying product categories as targets of consideration and purchase.

Furthermore, contrary to video filmed from cameras hanging from the ceiling in a store, the head-mounted camera records the scene at eye-level and not from high above, enabling to better notice what the shopper is doing (e.g., in aisles), and it follows the shopper all the way, not just in selected sections of the store. Additionally, using a head-mounted camera is more ethical than relying on surrounding cameras (often CCTV security cameras). On the other hand, head-mounted devices (e.g., camera, eye-tracking), which are not the most natural to wear whilst shopping, raise concerns of sampling bias (self-selection) and possibly causing change in the behaviour of the shopper; proponents argue that shoppers quickly forget of the device (devices are now made lighter) as they engage in shopping, but the issue is still in debate.

Video tracking is advantageous to RFID  and product scanners for the study of unplanned purchase behaviour by capturing acts of consideration: the RFID method alone (3) enables to trace the path of the shopper but not what one does in front of the shelf or stand display, and a scanner method allows to record what products are purchased but not which are considered. The advantage of the combined video + RFID approach according to Hui and his colleagues is in providing them “not only the shopping path but also the changes in the shoppers’ visual field as he or she walks around the store” (p. 449).

The complete research design included two interviews conducted with each shopper-participant — before the shopping trip, as a shopper enters the store, and after, on the way out. In the initial interview, shoppers were asked in which product categories they were planning to buy (aided by a list to choose from), as well as other shopping aspects (e.g., total budget, whether they brought their own shopping list). At the exit the shoppers were asked about personal characteristics, and the experimenters collected a copy of the receipt from the retailer’s transaction log. The information collected was essential for two aspects in particular: (a) distinguishing between planned and unplanned considerations; and (b) estimating the amount of money remaining for the shopper to make unplanned purchases out of the total budget (‘in-store slack’ metric).

237 participants were included in analyses. Overall, shoppers-participants planned to purchase from approximately 5.5 categories; they considered on average 13 categories in total, of which fewer than 5 were planned considerations (median 5.6). 37% of the participants carried a list prepared in advance.

Characteristics influencing unplanned consideration:  The researchers sought first to identify personal and product characteristics that significantly influence the probability of making an unplanned consideration in each given product category (a latent utility likelihood model was constructed). Consequently, they could infer which characteristics contribute to considering more categories in an unplanned manner. The model showed, for instance, that shoppers older in age and female shoppers are likely to engage in unplanned consideration in a greater number of product categories. Inversely, shoppers who are more familiar with a store (layout and location of products) and those carrying a shopping list tend to consider fewer product categories in an unplanned manner.

At a product level, a higher hedonic score for a product category is positively associated with greater incidence of unplanned consideration of it. Products that are promoted in the weekly flyer of the store at the time of a shopper’s visit are also more likely to receive an unplanned consideration from the shopper. Hui et al. further revealed effects of complementarity relations: products that were not planned beforehand for purchase (B) but are closer complementary of products in a ‘planned basket’ of shoppers (A) gain a greater likelihood of being considered in an unplanned manner (‘A –> B lift’).  [The researchers present a two-dimensional map detailing what products are more proximate and thus more likely to get paired together, not dependent yet on purchase of them].

Differences in behaviour between planned and unplanned considerations: Unplanned considerations tend to be made more haphazardly — while standing farther from display shelves and involving fewer product touches; conversely, planned considerations entail greater ‘depth’. Unplanned considerations tend to occur a little later in the shopping trip (the gap in timing is not very convincing). An unplanned consideration is less likely to entail reference to a shopping list — the list serves in “keeping the shopper on task”, being less prone to divert to unplanned consideration. Shoppers during an unplanned consideration are also less likely to refer to discount coupons or to in-store flyers/circulars. However, interestingly, some of the patterns found in this analysis change as an unplanned consideration turns into a purchase.

Importantly, in the outcome unplanned considerations are less likely to conclude with a purchase (63%) than planned considerations (83%). This raises the question, what can make an unplanned consideration result in purchase conversion?

Drivers of purchase conversion of unplanned considerations: Firstly, unplanned considerations that result in a purchase take longer (40 seconds on average) than those that do not (24 seconds). Secondly, shoppers get closer to the shelves and touch more product items before concluding with a purchase; the greater ‘depth’ of the process towards unplanned purchase is characterised by viewing fewer product displays (‘facings’) within the category — the shopper is concentrating on fewer alternatives yet examines those selected more carefully (e.g., by picking them up for a closer read). Another conspicuous finding is that shoppers are more likely to refer to a shopping list during an unplanned consideration that is going to result in a purchase — a plausible explanation is that the shopping list may help the shopper to seek whether an unplanned product complements a product on the list.

The researchers employed another (latent utility) model to investigate more systemically the drivers likely to lead unplanned considerations to result in a purchase. The model supported, for example, that purchase conversion is more likely in categories of  higher hedonic products. It corroborated the notions about ‘depth’ of consideration as a driver to purchase and the role of a shopping list in realising complementary unplanned products as supplements to the ‘planned basket’. It is also shown that interacting with a service staff for assistance increases the likelihood of concluding with a purchase.

  • Location in the store matters: An aisle is relatively a more likely place for an unplanned consideration to occur, and subsequently has a better chance when it happens to result in a purchase. The authors recommend assigning service staff to be present near aisles.

Complementarity relations were analysed once again, this time in the context of unplanned purchases. The analysis, as visualised in a new map, indicates that proximity between planned and unplanned categories enhances the likelihood of an unplanned purchase: if a shopper plans to purchase in category A, then the closer category B is to A, the more likely is the shopper to purchase in category B given it is considered. Hui et al. note that distances in the maps for considerations and for purchase conversion of unplanned considerations are not correlated, implying hence that the unplanned consideration and a purchase decision are two different dimensions in the decision process. This is a salient result because it distinguishes between engaging in consideration and the decision itself. The researchers caution, however, that in some cases the distinction between consideration and a choice decision may be false and inappropriate because they may happen rapidly in a single step.

  • The latent distances in the maps are also uncorrelated with physical distances between products in the supermarket (i.e., the complementarity relations are mental).

The research shows that while promotion (coupons or in-store flyers) for an unplanned product has a significant effect in increasing the probability of its consideration, it does not contribute to probability of its purchase. This evidence furthermore points to a separation between consideration and a decision. The authors suggest that a promotion may attract shoppers to consider a product, but they are mostly uninterested to buy and hence it has no further effect on their point-of-purchase behaviour. The researchers suggest that retailers can apply their model of complementarity to proactively invoke consideration by triggering a real-time promotion on a mobile shopping app for products associated with those on a digital list of the shopper “so a small coupon can nudge this consideration into a purchase”.

But there are some reservations to be made about the findings regarding promotions. An available promotion can increase the probability of a product to be considered in an unplanned manner, yet shoppers are less likely to look at their coupons or flyers at the relevant moment. Inversely, the existence of a promotion does not contribute to purchase conversion of an unplanned consideration but shoppers are more likely to refer to their coupons or flyers during unplanned considerations that result in a purchase.  A plausible explanation to resolve this apparent inconsistency is that reference to a promotional coupon or flyer is more concrete from a shopper viewpoint than the mere availability of a promotion; shoppers may not be aware of some of the promotions the researchers account for. In the article, the researchers do not address directly promotional information that appears on tags at the product display — such promotions may affect shoppers differently from flyers or distributed coupons (paper or digital via mobile app), because tags are more readily visible at the point-of-purchase.

One of the dynamic factors examined by Hui et al. is the ‘in-store slack’, the mental budget reserved for unplanned purchases. Reserving a larger slack increases the likelihood of unplanned considerations. Furthermore, at the moment of truth, the larger is the in-store slack that remains at the time of an unplanned consideration, the more likely is the shopper to take a product from the display to purchase. However, computations used in the analyses of dynamic changes in each shopper’s in-store slack appear to assume that shoppers estimate how much they already spent on planned products in various moments of the trip and are aware of their budget, an assumption not very realistic. The approach in the research is very clever, and yet consumers may not be so sophisticated: they may exceed their in-store slack, possibly because they are not very good in keeping their budget (e.g., exacerbated by use of credit cards) or in making arithmetic computations fluently.

Finally, shoppers could be subject to a dynamic trade-off between their self-control and the in-store slack. As the shopping trip progresses and the remaining in-store slack is expected to shrink, the shopper becomes less likely to allow an unplanned purchase, but he or she may become more likely to be tempted to consider and buy in an unplanned manner, because the strength of one’s self-control is depleted following active decision-making. In addition, a shopper who avoided making a purchase on the last occasion of unplanned consideration is more likely to purchase a product in the next unplanned occasion — this negative “momentum” effect means that following an initial effort at self-control, subsequent attempts are more likely to fail as a result of depletion of the strength of self-control.

The research of Hui, Huang, Suher and Inman offers multiple insights for retailers as well as manufacturers to take notice of, and much more material for thought and additional study and planning. The video tracking approach reveals patterns and drivers of shopper behaviour in unplanned considerations and how they relate to planned considerations.  The methodology is not without limitations; viewing and coding the video clips is notably time-consuming. Nevertheless, this research is bringing us a step forward towards better understanding and knowledge to act upon.

Ron Ventura, Ph.D. (Marketing)

Notes:

(1) Deconstructing the “First Moment of Truth”: Understanding Unplanned Consideration and Purchase Conversion Using In-Store Video Tracking; Sam K. Hui, Yanliu Huang, Jacob Suher, & J. Jeffrey Inman, 2013; Journal of Marketing Research, 50 (August), pp. 445-462.

(2) Innovations in Shopper Marketing: Current Insights and Future Research Issues; Venkatesh Shankar, J. Jeffrey Inman, Murali Mantrala, & Eileen Kelley, 2011; Journal of Retailing, 87S (1), pp. S29-S42.

(3) See other research on path data modelling and analysis in marketing and retailing by Hui with Peter Fader and Eric Bradlow (2009).

Read Full Post »